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Abstract

We prove the existence of a limit in Hm(D) of iterations of a double
layer potential constructed from the Hodge parametrix on a smooth
compact manifold with boundary, X, and a crack S ⊂ ∂D, D being a
domain in X. Using this result we obtain formulas for Sobolev solutions
to the Cauchy problem in D with data on S, for an elliptic operator A
of order m ≥ 1, whenever these solutions exist. This representation
involves the sum of a series whose terms are iterations of the double
layer potential. A similar regularisation is constructed also for a mixed
problem in D.
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1 Introduction

This paper is based on the following simple observation. Consider an operator
equation Au = f with a bounded operator A : H0 → H1 in Hilbert spaces.
Suppose each element u ∈ H0 can be written in the form u = π0u + π1 Au
where π0 is a projection onto the kernel of A in H0. Then it is to be expected
that under reasonable conditions the element π1f defines a solution to the
equation Au = f .

For the Cauchy-Riemann operator A = ∂̄ in Cn, n > 1, the double layer
potential involved in the regularisation formula is just the Martinelli-Bochner
integral. In this case, results similar to ours were obtained by Romanov [6].

Theorem 1.1 Let D be a bounded domain in Cn, n > 1, with a connected
boundary of class C1, and Mu stand for the Martinelli-Bochner integral of a
function u ∈ H1(D). Then the limit limN→∞ MN exists in the strong operator
topology of H1(D), and it is equal to π0, a projection onto the (closed) subspace
of holomorphic functions in H1(D).

By using this result Romanov [6] obtained an explicit formula for a solution
u ∈ H1(D) to ∂̄u = f , where D is a pseudoconvex domain with a smooth
boundary, and f a ∂̄-closed (0, 1)-form with coefficients in H1(D).

2 Preliminary results

Let X be a C∞ manifold of dimension n with a smooth boundary ∂X. We
tacitly assume that it is enclosed into a smooth closed manifold X̃ of the same
dimension.

For any smooth C-vector bundles E and F over X, we write Diffm(X; E, F )
for the space of all linear partial differential operators of order ≤ m between
sections of E and F .

Denote E∗ the conjugate bundle of E. Any Hermitian metric (., .)x on E
gives rise to a sesquilinear bundle isomorphism ∗E : E → E∗ by the equality
〈∗Ev, u〉x = (u, v)x for all sections u and v of E.

Pick a volume form dx on X, thus identifying dual and conjugate bundles.
For A ∈ Diffm(X; E, F ), denote by A′ ∈ Diffm(X; F ∗, E∗) the transposed op-
erator and by A∗ ∈ Diffm(X; F, E) the formal adjoint operator. We obviously
have A∗ = ∗−1

E A′∗F , cf. [9, 4.1.4] and elsewhere.
For an open set O ⊂ X, we write L2(O,E) for the Hilbert space of all

measurable sections of E over O with a finite norm (u, u)L2(O,E) =
∫

O
(u, u)xdx.

When no confusion can arise, we also denote Hm(O, E) the Sobolev space of
distribution sections of E over O, whose weak derivatives up to order m belong
to L2(O, E).
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Given any open set O in
◦

X, the interior of X, we let SA(O) stand for the
space of weak solutions to the equation Au = 0 in O. We also denote by Sm

A (O)
the closed subspace of Hm(O, E) consisting of all weak solutions to Au = 0 in
O.

Write σ(A) for the principal homogeneous symbol of order m of the operator
A, σ(A) living on the cotangent bundle T ∗X of X. From now on we assume
that σ(A) is injective away from the zero section of T ∗X. Hence it follows that
the Laplacian ∆ = A∗A is an elliptic differential operator of order 2m on X.

Let σ be a compact subset in
◦

X. In fact, we assume that σ lies on a smooth
closed hypersurface S in X. Our goal will be to construct the Hodge theory

of the Dirichlet problem for the Laplacian ∆ on the manifold V =
◦

X \ σ with
a crack along σ.

Crack problems are usually treated in the framework of analysis on man-
ifolds with edges, cf. Schulze [7]. One thinks of the boundary of σ on S as
an edge of V , the cross-section being a 2-dimensional plane with a cut along
a ray. The relevant function spaces are therefore weighted Sobolev spaces
Hs,w((V, ∂σ), E) of smoothness s and weight w, both s and w being real num-
bers. Recall that if s ∈ Z+ it coincides with the completion of sections of E
over V , C∞ up to the boundary and vanishing near ∂σ, with respect to the
norm

‖u‖Hs,w((V,∂σ),E) =

∑
ν

∫ ∑
|α|≤s

dist(x, ∂σ)2(|α|−w)|Dα(ϕνu)|2dx

1/2

,

where (ϕν) is a partition of unity subordinate to a suitable finite open covering
(Oν) of X.

However, we will deal with the very particular case Hm,m((V, ∂σ), E) which
allows us to restrict ourselves to the usual Sobolev spaces on X.

Namely, let Hm((V, ∂σ), E) be the closure of all sections of E over V , C∞

up to the boundary and vanishing close to ∂σ, in Hm(V, E).

Theorem 2.1 If the boundary of σ is smooth, then Hm,m((V, ∂σ), E) and
Hm((V, ∂σ), E) coincide as topological vector spaces.

Proof. Obviously, it is sufficient to show that the Hm,m((V, ∂σ), E) - and
Hm(V, E) -norms are equivalent on sections of E over V , C∞ up to the bound-
ary and vanishing close to ∂σ. Without loss of generality we can consider those
sections u whose supports are contained in the domain Oν of some chart on
X.

If Oν does not meet ∂σ then dist(x, ∂σ) is strictly positive in Oν . Hence
the Hm,m((V, ∂σ), E) - and Hm(V, E) -norms are equivalent on sections of E
with a support in Oν .
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In the case Oν ∩∂σ 6= ∅ we choose local coordinates x = (x1, . . . , xn) in Oν ,
such that Oν ∩σ is the half-plane {xn = 0, xn−1 ≤ 0}. Write x = (x′, xn−1, xn)
where x′ = (x1, . . . , xn−2). We restrict ourselves to sections u = u(x′, xn−1, xn)
supported in Q × B, with Q a rectangle in Rn−2, and B a disk with centre 0
and radius R � 1.

Since

‖u‖2
Hm,m((V,∂σ),E) =

∫ ∑
|α|≤m

dist(x, ∂σ)2(|α|−m)|Dαu|2dx,

the Hm(V, E)-norm is obviously dominated by the Hm,m((V, ∂σ), E)-norm
whence

Hm,m((V, ∂σ), E) ↪→ Hm((V, ∂σ), E).

On the other hand, the summands involving the derivatives of order m in
the norms ‖u‖Hm,m((V,∂σ),E) and ‖u‖Hm(V,E) coincide. To handle lower order
summands, we fix a multi-index α ∈ Zn

+ with 0 ≤ |α| ≤ m − 1. Introduce
polar coordinates {

xn−1 = r cos ϕ,
xn = r sin ϕ

in B, and set U(r) = Dαu (x′, r cos ϕ, r sin ϕ). Then∫
dist(x, ∂σ)2(|α|−m)|Dαu|2dx =

∫
Q

dx′
∫ π

−π

dϕ

∫ R

0

|r|α|−mU(r)|2 rdr.

We next make use of a Hardy-Littlewood inequality for measurable func-
tions on the semiaxis with values in a normed space. Namely,

‖rp−1

∫ r

0

f(%)d%‖Lq(R+) ≤
(

1

q′
− p

)−1

‖rp f(r)‖Lq(R+),

where 1 ≤ q ≤ ∞, 1/q + 1/q′ = 1 and p < 1/q′. Take f(r) = (∂/∂r)U(r) and
observe that

|f ′(r)| = |Dα+1n−1u cos ϕ + Dα+1nu sin ϕ|
≤ |Dα+1n−1u|+ |Dα+1nu|,

1j being the multi-index from Zn
+ which is 1 in the j -th place and 0 in each

other one. Repeated application of the Hardy-Littlewood inequality therefore
yields ∫

dist(x, ∂σ)2(|α|−m)|Dαu|2dx ≤ c ‖Dαu‖2
Hm−|α|(V,E),

with c a constant independent of u.
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Summarising we conclude that the Hm,m((V, ∂σ), E)-norm is majorised by
the Hm(V, E)-norm on functions vanishing near ∂σ. This completes the proof.

�
More generally, given an open set O ⊂ X and a closed set σ ⊂ X, we

denote Hm((O, σ), E) the closure of all sections of E over O, C∞ up to the
boundary and vanishing near σ, in Hm(O,E). If σ = ∂O, we obtain what is
usually referred to as

◦

Hm(O,E).

Fix a Dirichlet system Bj, j = 0, 1, . . . ,m − 1, of order m − 1 on the
boundary of V . More precisely, each Bj is a differential operator of type
E → Fj and order mj ≤ m − 1 in a neighbourhood U of ∂X ∪ S. Moreover,
the symbols σ(Bj), if restricted to the conormal bundle of ∂X ∪S, have ranks
equal to the dimensions of Fj.

Set t(u) = ⊕m−1
j=0 Bju, for u ∈ Hm(V, E). It follows from the results of

Hedberg [1] that

◦

Hm(V, E) = {u ∈ Hm(X, E) : t(u) = 0 on ∂X ∪ σ}, (2.1)

∂X ∪ σ being the boundary of V .

Corollary 2.2 Suppose ∂σ is smooth. Then we have a topological isomor-
phism

◦

Hm(V, E) ∼= {u ∈ Hm,m((V, ∂σ), E) : t(u) = 0 on ∂X ∪
◦
σ},

the space on the right-hand side being endowed with the norm induced from
Hm,m((V, ∂σ), E).

Proof. By Theorem 2.1 it suffices to show that
◦

Hm(V, E) consists of all
u ∈ Hm((V, ∂σ), E) such that t(u) = 0 on ∂V .

On the one hand, if u ∈
◦

Hm(V, E) then u ∈ Hm((V, ∂σ), E) and t(u) = 0
on ∂V , as is easy to see.

On the other hand, if u ∈ Hm((V, ∂σ), E) and t(u) = 0 on ∂V then u ∈
Hm((V, ∂V ), E), as follows from [1]. This just amounts to the desired assertion.

�

3 Hodge theory on manifolds with cracks

Let H−m(V, E) denote the dual space of
◦

Hm(V, E) with respect to the pairing
in L2(V, E). This is not a canonical definition, we rather follow the notation
of [9, 1.4.9].
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For every u ∈ Hm(V, E), the correspondence

v 7→
∫

V

(Au, Av)x dx

is a continuous conjugate linear functional on
◦

Hm(V, E). Thus, the Laplacian
∆ = A∗A extends to a mapping Hm(V, E) → H−m(V, E).

The following boundary value problem is a straightforward generalisation
of the classical Dirichlet problem, cf. [9, 9.2.4].

Problem 3.1 Given an F ∈ H−m(V, E), find a section u ∈ Hm(X, E)
such that {

∆u = F in V,
t(u) = 0 on ∂V.

Another way of stating the problem is to say, “Study the restriction of ∆

to
◦

Hm(V, E).”

If u ∈
◦

Hm(V, E) and ∆u = 0, then Au = 0 in V . In the sequel, H(V )
stands for

◦

Hm(V, E) ∩ SA(V ).

Furthermore, we letH⊥(V ) consist of all sections F ∈ H−m(V, E) satisfying∫
V

(F, v)x dx = 0

for any v ∈ H(V ).

Lemma 3.2 Problem 3.1 is Fredholm. The difference of any two solutions
lies in H(V ). The problem is solvable if and only if F ∈ H⊥(V ). Moreover,
there is a constant c > 0 such that for any solution u ∈ H⊥(V ) to Problem 3.1,
we have

‖u‖Hm(X,E) ≤ c ‖F‖H−m(V,E). (3.1)

Proof. By definition, the equality ∆u = F means that∫
V

(Au, Av)x dx =

∫
V

(F, v)x dx (3.2)

for all v ∈
◦

Hm(V, E). We are thus looking for a section u ∈
◦

Hm(V, E) satisfying
(3.2).

It readily follows from (3.2) that the null-space of Problem 3.1 is just H(V ).
Since

◦

Hm(V, E) ↪→ Hm(X, E)
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and σ is a set of zero measure in
◦

X, we deduce that

H(V ) ↪→
◦

Hm(
◦

X, E) ∩ SA(
◦

X),

the space on the right-hand side being H(
◦

X). Taking into account that the
boundary of X is smooth, we deduce thatH(V ) is a finite-dimensional subspace
of C∞(X, E).

That the condition F ∈ H⊥(V ) is necessary for the problem to be solvable,
follows from (3.2) immediately. Let us prove the sufficiency.

To this end, we invoke the classical G̊arding inequality. Namely, as A has
injective symbol, we have

‖u‖2
Hm(X,E) ≤ C

∫
X

(Au, Au)x dx + c ‖u‖2
L2(X,E) (3.3)

for all u ∈
◦

Hm(V, E), the constants C and c being independent of u (cf. for
instance [10]).

A familiar argument shows that there is a constant C > 0 with the property
that

‖u‖2
Hm(X,E) ≤ C

∫
X

(Au, Au)x dx,

for each u ∈
◦

Hm(V, E) ∩ H⊥(V ). Indeed, we argue by contradiction. If there

is no such constant then we can find a sequence (uν) in
◦

Hm(V, E) ∩ H⊥(V ),
such that

‖uν‖Hm(X,E) = 1,
‖Auν‖L2(X,F ) < 2−ν .

As the unit ball in a separable Hilbert space is weakly compact, we can assume

that (uν) converges weakly to a section u∞ ∈
◦

Hm(V, E) ∩ H⊥(V ). It follows
that ∫

X

(u∞, A∗v)x dx = lim
ν→∞

∫
X

(uν , A
∗v)x dx

= lim
ν→∞

∫
X

(Auν , v)x dx

= 0

for all v ∈ C∞
comp(

◦

X, E), i.e. u∞ ∈ H(V ). We thus conclude that u∞ = 0. But
the G̊arding inequality yields

1 ≤ C 2−ν + c ‖uν‖L2(X,E)
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for all ν. Since the inclusion
◦

Hm(V, E) ↪→ L2(X, E) is compact, and thus uν

converges strongly to u∞ in L2(X, E), we get

‖u∞‖L2(X,E) ≥ 1/c,

which contradicts u∞ = 0.
We have thus proved that the Hermitian form∫

X

(Au, Av)x dx

defines a scalar product in the Hilbert space
◦

Hm(V, E) ∩ H⊥(V ), the corre-
sponding norm being equivalent to the original one. Now the Riesz Theorem
enables us to assert that for every F ∈ H−m(V, E) there exists a unique section

u ∈
◦

Hm(V, E) ∩H⊥(V )

satisfying ∫
V

(F, v)x dx =

∫
X

(Au, Av)x dx

for all v ∈
◦

Hm(V, E) ∩H⊥(V ).

Obviously, every v ∈
◦

Hm(V, E) can be written in the form v = v1 + v2,
with

v1 ∈ H(V ),

v2 ∈
◦

Hm(V, E) ∩H⊥(V ).

It follows that if F ∈ H⊥(V ) then u satisfies (3.2) for all v ∈
◦

Hm(V, E), as
desired.

Finally, since for any section F ∈ H−m(V, E) “orthogonal” to H(V ) there
is a unique solution to Problem 3.1 in

◦

Hm(V, E) ∩H⊥(V ),

the estimate (3.1) follows from the Open Map Theorem.
�

We are now in a position to derive a Hodge decomposition for the Dirichlet
problem in V .

Theorem 3.3 There are bounded linear operators

H : H−m(V, E) → H(V ),

G : H−m(V, E) →
◦

Hm(V, E) ∩H⊥(V )

such that



Green Integrals on Manifolds with Cracks 11

1) H is the L2(V, E)-orthogonal projection onto the space H(V ), with a
kernel KH(x, y) =

∑
j hj(x)⊗ ∗Ehj(y) where (hj) is an orthogonal basis

of H(V );

2) AH = 0 and GH = HG = 0;

3)

G∆u = u−Hu for all u ∈
◦

Hm(V, E),
∆GF = F −HF for all F ∈ H−m(V, E).

Proof. As already mentioned in the proof of Lemma 3.2, H(V ) is a finite-
dimensional subspace of C∞(X, E). Denote H the L2(V, E)-orthogonal pro-
jection onto H(V ). Fix an orthogonal basis (hj) for H(V ). Then H has the
kernel

KH(x, y) =
∑

j

hj(x)⊗ ∗Ehj(y),

because

(HF )(x) =
∑

j

(∫
V

(F (y), hj(y))y dy

)
hj(x)

for all F ∈ L2(V, E). Since H is a smoothing operator it extends to all of
H−m(V, E), too, by

(HF )(x) = 〈KH(x, ·), F 〉V ,

for x ∈ V . Clearly,

H : H−m(V, E) → H(V ) ↪→
◦

Hm(V, E)

is bounded and AH = 0.
Pick F ∈ H−m(V, E). Since KH(x, y)∗ = KH(y, x) we get∫

V

(F −HF, v)x dx =

∫
V

(F −HF,Hv)x dx

=

∫
V

(
HF −H2F, v

)
x

dx

=

∫
V

(HF −HF, v)x dx

= 0

for all v ∈ H(V ), i.e.,
F −HF ∈ H⊥(V ).

Therefore, Lemma 3.2 implies that there exists a solution u ∈
◦

Hm(V, E) to
∆u = F −HF in V . Setting

GF = u−Hu
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we obtain
F = HF + ∆GF

for all F ∈ H−m(V, E).
As u−Hu ∈ H⊥(V ) we see from (3.1) that

G : H−m(V, E) →
◦

Hm(V, E) ∩H⊥(V )

is bounded. By definition, HGF = Hu−H2u = 0 and GHF = 0.
On the other hand, we easily obtain the L2(V, E) -orthogonal decomposition

u = Hu + (u−Hu)

= Hu + G∆u

for all u ∈
◦

Hm(V, E). This completes the proof.
�

When restricted to L2(V, E), the operator G is selfadjoint. In fact, given
any F, v ∈ H−m(V, E), we have

(GF, v) = (GF, Hv + ∆Gv)

= (GF, ∆Gv)

= (∆GF, Gv)

= (F, Gv) ,

(·, ·) meaning the scalar product in L2(V, E). Hence it follows that the Schwartz
kernel of G,

KG(·, ·) ∈
◦

Hm(V, E)⊗
◦

Hm(V, E∗) ↪→ D′(V × V, E ⊗ E∗),

is Hermitian, i.e., KG(x, y)∗ = KG(y, x) for all x, y ∈ V .

Lemma 3.4 The operator T = GA∗ extends to a continuous linear map-
ping

L2(V, F ) →
◦

Hm(V, E).

Proof. For any fixed f ∈ L2(V, F ), the integral∫
V

(f, Av)x dx

defines a continuous linear functional on
◦

Hm(V, E). Hence, the (formal) ad-
joint A∗ extends to a mapping L2(V, F ) → H−m(V, E), which is obviously

continuous. Since G maps H−m(V, E) continuously to
◦

Hm(V, E), the lemma
follows. �
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As is easy to check by Stokes’ formula, the Schwartz kernel of T is

KT (x, y) = (A∗(y, D))′KG(x, y),

the ‘prime’ meaning the transposed operator.

Using T , we may rewrite the Hodge decomposition of Theorem 3.3 in the
form

u = Hu + TAu (3.4)

over V , for each u ∈
◦

Hm(V, E).

We now introduce the Hermitian form

h(u, v) =

∫
V

(Hu, Hv)x dx +

∫
V

(Au, Av)x dx

defined for u, v ∈
◦

Hm(V, E)

Theorem 3.5 The Hermitian form h(·, ·) is a scalar product in
◦

Hm(V, E)
defining a norm equivalent to the original one. The operator H is also an

orthogonal projection from
◦

Hm(V, E) onto H(V ) with respect to h(·, ·). More-
over,

h(Tf, u) =

∫
V

(f, Au)x dx

for all f ∈ L2(V, F ) and u ∈
◦

Hm(V, E).

Proof. The coefficients of A are C∞ up to the boundary of X, and so

Au ∈ L2(V, F ) for all u ∈
◦

Hm(V, E). Moreover, it follows from (3.4) that

h(u, u) = 0 implies u ≡ 0 in X. Hence h(·, ·) is a scalar product on
◦

Hm(V, E).

Since H is a smoothing operator, the original norm of
◦

Hm(V, E) is not
weaker than

√
h(·, ·).

Further, (3.4) and Lemma 3.4 show that there exists a constant c > 0 such
that

‖u‖Hm(V,E) ≤ c
(
‖Hu‖Hm(V,E) + ‖Au‖L2(V,F )

)
for all u ∈

◦

Hm(V, E).

On the other hand, since H is a finite rank operator, there is a constant
C > 0 such that

‖Hu‖Hm(V,E) ≤ C ‖Hu‖L2(V,E)

for all u ∈
◦

Hm(V, E). This proves the equivalence of the topologies.
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Suppose f ∈ C∞
comp(V, F ) and u ∈

◦

Hm(V, E). By Theorem 3.3, we get
HTf = 0. Moreover,∫

V

(HA∗f, v)x dx =

∫
V

(f, AHv)x dx

= 0

for all v ∈ L2(V, E), whence HA∗f = 0. Thus,

h(Tf, u) =

∫
V

(AG(A∗f), Au)x dx

=

∫
V

(∆G(A∗f), u)x dx

=

∫
V

(A∗f −H(A∗f), u)x dx

=

∫
V

(f, Au)x dx.

As C∞
comp(V, F ) is dense in L2(V, F ), we obtain the desired assertion on the

integral T .

Finally, for any u, v ∈
◦

Hm(V, E), we have

h(Hu, = h(u, v)− h(TAu, v)

= h(u, v)−
∫

V

(Au, Av)x dx

=

∫
V

(Hu, Hv)x dx,

i.e., H is a selfadjoint operator in
◦

Hm(V, E) with respect to the scalar product
h(·, ·), and H2 = H, as desired.

�

4 Green formulas on manifolds with cracks

In this section we discuss Green formulas for sections of E on open subsets of
V . To this end, we choose a Green operator GA(·, ·) for A on X, cf. [9, 9.2.1].
Given an oriented hypersurface S ⊂ X, we denote [S]A the kernel over X ×X
defined by 〈

[S]A, g ⊗ u
〉

X×X
=

∫
S

GA(g, u)

for all g ∈ C∞(X,F ∗) and u ∈ C∞(X, E) whose supports meet each other in
a compact set.
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In particular, the kernel [∂V ]A is supported by the hypersurface ∂X ∪ σ.
However, σ, if regarded as a part of the boundary of V , has two sides in X with
opposite orientations. When applied to sections g and u whose derivatives up
to order m− 1 are continuous in a neighbourhood of σ, the kernel [∂V ]A does
not include any integration over σ because the integrals over the sides with
opposite orientations cancel. In general, the continuity up to the boundary in
V does not assume that the limit values from both sides of σ coincide in the
interior of σ on S. Hence, [∂V ]A actually includes, along with the integral over
∂X, the integral over σ of the difference of the limit values of GA(g, u) on S.

Away from the singularities of V , i.e., ∂σ, the Green operator G behaves
like the Green function of an elliptic boundary value problem, cf. [5]. The
edge ∂σ is well known to cause additional singularities of the kernel of G on
(V × ∂σ) ∪ (∂σ × V ).

Given any section u ∈ Hm(V, E) vanishing in a neighbourhood of ∂σ, we
set

(Mu)(x) = −GA∗ (
[∂V ]Au

)
= −

∫
∂V

GA(KT (x, y), u(y))

for x ∈ V .

Theorem 4.1 As defined above, the operator M extends to a continuous
mapping of Hm(V, E), and

u = Hu + TAu + Mu (4.1)

for all u ∈ Hm(V, E).

Proof. Given any u ∈ Hm(V, E), we define Mu from the equality (4.1),
namely

Mu = u−Hu− TAu.

Note that H is a smoothing operator in the sense that it extends naturally
to a continuous mapping

H−∞(V, E) →
◦

H∞(V, E),

where
◦

H∞(V, E) is the projective limit of the family
◦

Hs(V, E), s ∈ Z+, and
H−∞(V, E) the dual space under the pairing induced from L2(V, E). Hence
it follows, by Lemma 3.4, that M is a well-defined continuous mapping of
Hm(V, E).

We shall have established the theorem if we prove that the operator M
defined from (4.1) is actually an appropriate extension of the operator M



16 B.-W. Schulze, A. Shlapunov, and N. Tarkhanov

given before Theorem 4.1. This is an easy consequence of Stokes’ formula.
Indeed, pick a u ∈ Hm(V, E) vanishing near ∂σ. Combining Stokes’ formula
and Theorem 3.3, we get

(u−Hu− TAu, v)L2(V,E) = (u, v −Hv)L2(V,E) − (Au, AGv)L2(V,F )

= (u, v −Hv −∆Gv)L2(V,E) −
∫

∂V

GA(∗F (AGv), u)

=
(
−T

(
[∂V ]Au

)
, v

)
L2(V,E)

for all v ∈ C∞
comp(V, E). This shows that Mu = −T

(
[∂V ]Au

)
in (the interior

of) V , as desired.
�

We now consider the inhomogeneous Dirichlet problem for the Laplacian
∆ on V .

To this end, we first give a rigorous meaning to the boundary condition
t(u) = u0 on ∂V . If ∂σ is sufficiently smooth, t induces a topological isomor-
phism

Hm(V, E)
◦

Hm(V, E)

∼=→ ⊕m−1
j=0 Hm−mj−1/2(∂V, Fj),

which is due to (2.1). Hence we can more generally interpret t as the quotient
mapping

t : Hm(V, E) → Hm(V, E)
◦

Hm(V, E)
, (4.2)

the quotient on the right substituting the space of Dirichlet data on ∂V . We
make use of the Hilbert structure in Hm(V, E) to construct a continuous right
inverse t−1 for t.

Problem 4.2 Given F ∈ H−m(V, E) and u0 ∈ Hm(V, E)/
◦

Hm(V, E), find
a section u ∈ Hm(V, E) such that{

∆u = F in V,
t(u) = u0 on ∂V.

Lemma 4.3 Problem 4.2 is solvable if and only if F ∈ H⊥(V ). Moreover,
for each F ∈ H⊥(V ),

u = GF + M
(
t−1u0

)
is the solution to Problem 4.2 belonging to Hm(V, E)∩H⊥(V ) and thus satis-
fying

‖u‖Hm(V,E) ≤ c

(
‖F‖H−m(V,E) + ‖u0‖Hm(V,E)

◦
Hm(V,E)

)
. (4.3)
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Proof. The necessity of the condition F ∈ H⊥(V ) is obvious. What is left
is to show that under this condition u = GF + M (t−1u0) is the solution to
Problem 4.2 in Hm(V, E) ∩H⊥(V ).

Indeed, Theorem 3.3 shows that GF ∈
◦

Hm(V, E) is “orthogonal” to H(M)
and satisfies ∆(GF ) = F .

On the other hand, given any Dirichlet data u0, we find a U ∈ Hm(V, E)
such that t(U) = u0 on ∂V . Note that MU is actually independent of the
particular choice of U , for if U ′, U ′′ ∈ Hm(V, E) satisfy

t(U ′) = u0,
t(U ′′) = u0

then U ′ − U ′′ ∈
◦

Hm(V, E) whence

MU ′ = MU ′′ + M (U ′ − U ′′)

= MU ′′ + (U ′ − U ′′)−H (U ′ − U ′′)−G∆ (U ′ − U ′′)

= MU ′′,

the last equality being a consequence of Theorem 3.3. Using Theorem 4.1 we
get

∆ MU = ∆ (U −HU −G∆U)

= ∆U − (∆U −H ∆U)

= 0

and

t (MU) = t (U −HU −G∆U)

= t (U)

= u0.

Finally, the section MU is “orthogonal” to H(V ) because so are both U −HU
and G∆U .

Summarising we conclude that u = GF + MU gives a canonical solution
to Problem 4.2, as desired. The estimate (4.3) is a consequence of the Open
Map Theorem.

�
Let D be a relatively compact domain (i.e. open connected subset) in

◦

X
with a smooth boundary (S =) ∂D containing σ.

For
u ∈ Hm(D, E),
f ∈ L2(D, F ),
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we consider the integrals

HDu = H (χDu) ,
TDf = T (χDf) ,

MDu = −T
(
[∂D]Au

)
in V , where χD is the characteristic function of D in X. Analysis similar to
that in the proof of Theorem 4.1 actually shows that

χDu = HDu + TDAu + MDu (4.4)

over V , for every u ∈ Hm(D, E).

Lemma 4.4 As defined above, the integrals HD, TD and MD induce bound-
ed operators

HD : Hm(D, E) → Hm((D, σ), E),
TD : L2(D, F ) → Hm((D, σ), E),

MD : Hm(D, E) → Hm(D, E).

Proof. We first observe that the space Hm((D, σ), E) coincides with the

restriction of
◦

Hm(V, E) to D.
Since H extends to a continuous mapping H−∞(V, E) → H(V ), the bound-

edness of HD is clear.
Suppose f ∈ L2(D, F ). Then χDf is naturally regarded as the extension

of f to a section in L2(X, F ) by zero. We have TDf = T (χDf), and so
the mapping TD : L2(D, F ) → Hm((D, σ), E) is continuous, which is due to
Lemma 3.4.

Finally, in order to complete the proof it is sufficient to invoke the equality
MD = Id−HD − TDA in D.

�

5 Examples

Example 5.1 Let X be a bounded domain with smooth boundary in Rn,
n > 1, and A an operator with injective symbol in a neighbourhood X̃ of X̄.
Assume that A fulfills the uniqueness condition for the Cauchy problem in the
small on X̃. Write G for the Green function of the Dirichlet problem for the
Laplacian ∆ = A∗A in X. In [3], a scalar product hD(·, ·) on Hm(D, E) is
constructed, such that the corresponding norm is equivalent to the original
one and the operator TD is adjoint to A : Hm(D, E) → L2(D, F ) with respect
to hD(·, ·), i.e.

hD(TDf, v) =

∫
D

(f, Av)x dx
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for all f ∈ L2(D, F ) and v ∈ Hm(D, F ). This implies that the iterations
of the double layer potential MD in Hm(D, F ) converge to the projection
onto the subspace Hm(D, E) ∩ SA(D). This case corresponds to the Hodge
decomposition for the Dirichlet problem in X with empty crack σ and H(V )
being trivial.

�

Recall that Hm((D, σ), E) just amounts to the subspace of Hm(D, E) con-
sisting of all u with t(u) = 0 on σ.

Example 5.2 Under the assumptions of Example 5.1, let moreover X have
a crack along a closed piece σ of a smooth hypersurface in X. We denote G
the Green function of the Dirichlet problem for the Laplacian ∆ in V = X \σ.
In our paper [8], a scalar product hD(·, ·) on Hm((D, σ), E) is constructed,
defining an equivalent topology on this space and such that the operator TD

is actually adjoint to A : Hm((D, σ), E) → L2(D, F ) with respect to hD(·, ·),
i.e.,

hD(TDf, v) =

∫
D

(f, Av)x dx

for all f ∈ L2(D, F ) and v ∈ Hm((D, σ), E). When combined with a general
result of functional analysis, this implies that the limit of iterations MN

D in
the strong operator topology of L(Hm((D, σ), E)) is equal to zero. This case
corresponds to the Hodge decomposition for the Dirichlet problem in X with
a crack along σ and H = 0.

�

In the next section we will prove similar results for the integrals TD and
MD in our more general setting.

6 Construction of the scalar product hD(·, ·)
We first apply Lemma 4.3 to X \D, a C∞ manifold with boundary. Namely,
write Sm

∆ (X̂ \ D) for the subspace of Hm(X \ D, E) consisting of all u, such
that ∆u = 0 in the interior of X \D and t(u) = 0 on ∂X. By Lemma 4.3, we
get a topological isomorphism

Sm
∆ (X̂ \D) ∩H⊥(X \D)

t+−→ ⊕m−1
j=0 Hm−mj−1/2(∂D, Fj)

given by u 7→ t(u) |∂D. Finally, composing the inverse t−1
+ with the trace

operator

Hm(D, E)
t−−→ ⊕m−1

j=0 Hm−mj−1/2(∂D, Fj)
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we arrive at a continuous linear mapping

Hm(D, E) 3 u 7→ E(u) ∈ Sm
∆ (X̂ \D) ∩H⊥(X \D). (6.1)

For u ∈ Hm(D, E), we now set

e(u)(x) =

{
u(x) if x ∈ D,
E(u)(x) if x ∈ X \ D̄.

Since t(E(u)) = t(u) on ∂D, it follows that e(u) ∈ Hm(X, E). Furthermore,
we have

e(u) ∈
◦

Hm(V, E)

for all u ∈ Hm((D, σ), E).

Theorem 6.1 The Hermitian form hD(u, v) = h(e(u), e(v)) is a scalar
product in Hm((D, σ), E) defining a topology equivalent to the original one.

Proof. Theorem 3.5 implies the existence of a positive constant c with the
property that

‖u‖2
Hm(D,E) ≤ ‖e(u)‖2

Hm(V,E)

≤ c h(e(u), e(u))

for all u ∈ Hm((D, σ), E).
On the other hand,

hD(u, u) ≤ C ‖e(u)‖2
Hm(V,E)

≤ 2C
(
‖u‖2

Hm(D,E) + ‖E(u)‖2
Hm(X\D,E)

)
for all u ∈ Hm((D, σ), E), with C a constant independent of u. Using Lem-
ma 4.3 and the continuity of the trace operator we see that

‖E(u)‖Hm(X\D,E) ≤ c
m−1∑
j=0

‖Bju‖Hm−mj−1/2(∂D,Fj)

≤ C ‖u‖Hm(D,E)

for all u ∈ Hm(D, E), the constants c and C need not be the same in different
applications. This finishes the proof.

�

Theorem 6.2 Assume that u ∈ Hm(D, E) and f ∈ L2(D, F ). For every
v ∈ Hm((D, σ), E), it follows that

hD (TDf, v) =

∫
D

(f, Av)x dx,

hD ((HD + MD)u, v) =

∫
X\D

(AE(u), AE(v))x dx +

∫
X

(He(u), He(v))x dx.
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Proof. Suppose f ∈ C∞
comp(D, F ). Then TDf ∈

◦

Hm(V, E). Let us show
that

e (Tf |D) = Tf.

For this purpose, it is sufficient to check that the restriction of Tf to X \ D̄
lies in Sm

∆ (X̂ \D) ∩H⊥(X \D).
However, Tf = G (A∗f) and therefore, as we have already seen in the proof

of Theorem 3.5,

∆ Tf = A∗f −HA∗f

= A∗f

on X. Since f has a compact support in D we readily deduce that ∆ Tf = 0
in X \ D̄.

Note that H(X \D) ⊂ H(V ). Indeed, every element u ∈ H(X \D) can be
extended by zero from X \D to all of X as a solution to Au = 0 on X. Since
G (A∗f) is “orthogonal” to H(V ) we conclude that Tf |X\D̄ ∈ H⊥(X \D), as
desired.

Further, if v ∈ Hm((D, σ), E) then e(v) ∈
◦

Hm(V, E) and Theorem 3.5
implies

hD (TDf, v) = h (Tf, e(v))

=

∫
X

(f, Ae(v))x dx

=

∫
D

(f, Av)x dx.

Since C∞
comp(D, F ) is dense in L2(D, F ) and the operator TD is bounded,

this formula actually holds for all f ∈ L2(D, F ).
Finally, (4.4) implies that

hD ((HD + MD)u, v) = hD (u− TDAu, v)

=

∫
X\D

(AE(u), AE(v))x dx +

∫
X

(He(u), He(v))x dx

for all v ∈ Hm((D, σ), E), as desired.
�

7 Iterations of potentials

Corollary 7.1 The operators

TDA : Hm((D, σ), E) → Hm((D, σ), E),
HD + MD : Hm((D, σ), E) → Hm((D, σ), E)
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are selfadjoint and non-negative with respect to hD(·, ·), and the norms of TDA
and HD + MD do not exceed 1.

Proof. This follows immediately from Theorems 6.1 and 6.2.
�

Similarly to H⊥(V ), we denote H⊥(D) the space of all F ∈ H−m(D, E)
such that ∫

D

(F, v)x dx = 0

for any v ∈ H(D). It is easy to see that Hm((D, σ), E)∩H⊥(D) just amounts
to the orthogonal complement of H(D) in Hm((D, σ), E) with respect to the
scalar product hD(·, ·) thereon. Indeed, we have H(D) ↪→ H(V ) because every
element v ∈ H(D) may be extended by zero from D to X as a solution to
Av = 0 on X. It follows that E(v) = 0 for all v ∈ H(D), whence Ae(v) = 0 on
X and

hD(u, v) =

∫
X

(He(u), He(v))x dx

=

∫
D

(u, v)x dx,

as desired.
Lemma 4.4 allows one to consider iterations of TDA and HD + MD in the

space Hm((D, σ), E). Given a closed subspace Σ of Hm((D, σ), E), we write
πΣ for the orthogonal projection of Hm((D, σ), E) onto Σ with respect to the
scalar product hD(·, ·).

Corollary 7.2 In the strong operator topology in L(Hm((D, σ), E)), we
have

lim
N→∞

(TDA)N = πker(HD+MD),

lim
N→∞

(HD + MD)N = πHm((D,σ),E)∩SA(D).

Moreover, in the strong operator topology of L(L2(D, F )),

lim
N→∞

(Id− ATD)N = πker TD
.

Proof. It follows from Corollary 7.1 that

lim
N→∞

(TDA)N = πker(Id−TDA),

lim
N→∞

(HD + MD)N = πker(Id−HD−MD),

lim
N→∞

(Id− ATD)N = πker ATD
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in the strong operator topology of L(Hm((D, σ), E)) or L(L2(D, F )), respec-
tively (see, for instance, §2 of [3] or [4] for compact operators). Theorem 6.2
and (4.4) imply

ker(Id− TDA) = ker(HD + MD),

ker TDA = Hm((D, σ), E) ∩ SA(D),

ker ATD = ker TD,

showing the corollary.
�

Obliviously, if the coefficients of A are real analytic and σ has at least one
interior point on ∂D then Hm((D, σ), E) ∩ SA(D) = {0}. If moreover every
connected component of X \ D̄ meets the boundary of V , i.e., ∂X ∪ σ, then
HD = 0 and

ker MD =
◦

Hm(D, E).

Indeed, according to Theorem 6.2, if u ∈ Hm((D, σ), E) and MDu = 0 then
AE(u) = 0 in X \D̄ and t(E(u)) = 0 on ∂X∪σ. Hence it follows that E(u) ≡ 0
in X \ D̄, and so t(E(u)) = 0 on ∂D. From this we conclude that t(u) = 0 on

∂D whence u ∈
◦

Hm(D, E). Conversely, if u ∈
◦

Hm(D, E) then MDu = 0, as
desired.

Theorem 7.3 In the strong operator topology of L(Hm((D, σ), E)), we
have

Id = HD + πker(HD+MD) +
∞∑

ν=0

(TDA)ν MD, (7.1)

Id = πHm((D,σ),E)∩SA(D) +
∞∑

ν=0

(HD + MD)ν TDA. (7.2)

Moreover, in the strong operator topology of L(L2(D, F )),

Id = πker TD
+

∞∑
ν=0

A (HD + MD)ν TD. (7.3)

Proof. Write

Id = (Id− ATD)N +
N−1∑
ν=0

(Id− ATD)ν ATD, (7.4)

for every N = 1, 2, . . .. It is easily seen from (4.4) that

(Id− ATD)ν ATD = A (Id− TDA)ν TD

= A (HD + MD)ν TD.

Using Corollary 7.2 we can pass to the limit in (7.4), when N → ∞, thus
obtaining (7.3). The proofs for (7.1) and (7.2) are similar.

�
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8 Cauchy problem

We first introduce the space of Cauchy data on σ, for our differential operator
A. Since A is given the domain Hm(D, E), the space of zero Cauchy data is
Hm((D, σ), E). Recall that Hm((D, σ), E) is proved to be the restriction of
◦

Hm(V, E) to D.
Similarly to (4.2) we define the space of Cauchy data on σ as the quotient

space
Hm(D, E)

Hm((D, σ), E)
,

t being thought of as the quotient mapping

t : Hm(D, E) → Hm(D, E)

Hm((D, σ), E)
. (8.1)

Once again we use the Hilbert structure in Hm(D, E) to construct a con-
tinuous right inverse t−1 for t.

If the boundary of σ on ∂D is sufficiently smooth then the quotient space
in (8.1) can be identified with ⊕m−1

j=0 Hm−mj−1/2(σ, Fj).
Consider the following Cauchy problem, for the operator A and the Dirich-

let system (Bj)j=0,...,m−1.

Problem 8.1 Given f ∈ L2(D, F ) and u0 ∈ Hm(D, E)/Hm((D, σ), E),
find u ∈ Hm(D, E) satisfying{

Pu = f in D,
t(u) = u0 on σ.

This problem is ill-posed if σ is different from the whole boundary. Using
Theorem 7.3 we obtain approximate solutions to the problem. To this end, we
observe that

Hm(V, E)
◦

Hm(V, E)
↪→ Hm(D, E)

Hm((D, σ), E)

is a well-defined mapping “onto”, which substitutes restriction of sections over
∂V to σ. Pick a U ∈ Hm(V, E) such that t(U) = u0 on σ. Lemma 4.3 yields
that MU ∈ Hm(V, E) satisfies ∆MU = 0 in V and t(MU) = u0 on σ, the last
property being sufficient. Problem 8.1 thus reduces to that with zero boundary
conditions.

Problem 8.2 Given any f ∈ L2(D, F ), find a section u ∈ Hm((D, σ), E)
such that Au = f in D.



Green Integrals on Manifolds with Cracks 25

Note that for the problem to be solvable it is necessary that f ⊥ ker TD.
Indeed, ∫

D

(f, g)x dx =

∫
D

(Au, g)x dx

= hD(u, TDg)

= 0

for all g ∈ L2(D, F ) satisfying TDg = 0, the second equality being due to
Theorem 6.2.

Theorem 8.3 Suppose f ∈ L2(D, F ). Problem 8.2 is solvable if and only
if f ⊥ ker TD and the series

Rf =
∞∑

ν=0

(HD + MD)ν TDf

converges in Hm((D, σ), E). Moreover, if these conditions hold then Rf is a
solution to Problem 8.2.

Proof. As mentioned above, the necessity follows from Theorems 6.1 and
7.3.

Conversely, let both conditions of the theorem be fulfilled. Then (7.3)
implies

f =
∞∑

ν=0

A (HD + MD)ν TDf.

Since the series Rf converges in Hm((D, σ), E) we conclude that f = ARf , as
desired.

�
In the case considered in Example 5.2 a similar result has been proved in

[8].

Corollary 7.2 shows that the solution u = Rf lies in the orthogonal comple-
ment of the subspace Hm((D, σ), E)∩SA(D) in Hm((D, σ), E) with respect to
the scalar product hD(·, ·). Clearly, Problem 8.2 possesses at most one solution
belonging to this orthogonal complement. The partial sums RNf of the series
Rf may be regarded as approximate solutions to Problem 8.2, provided that
f ⊥ ker TD. In fact, it follows easily from Corollary 7.2 and Theorem 7.3 that
RNf belongs to the orthogonal complement in question, for each N = 0, 1, . . .,
and

lim
N→∞

‖f − (πker TD
f + ARNf) ‖L2(D,F ) = 0
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for all f ∈ L2(D, F ). Indeed,

‖f − (πker TD
f + ARNf) ‖L2(D,F ) = ‖

∞∑
ν=N+1

A M ν
D TDf‖L2(D,F ),

and the last expression is the rest of a converging series.
If A is included into an elliptic complex

C∞
loc(X,E)

A−→ C∞
loc(X, F )

B−→ C∞
loc(X, G)

then the condition f ⊥ ker TD in Theorem 8.3 may be replaced by
1) Bf = 0 in D;
2) f ⊥ ker TD ∩ SB(D).
Write

n(g) = ⊕m−1
j=0 ∗−1

Fj
Cj ∗F (g)

for the formal adjoint of t with respect to the Green formula for A in D, cf.
[9, 9.2.3]. Set

H1(D, σ) = {g ∈ L2(D, F ) : A∗g = 0, Bg = 0, and n(g) = 0 on ∂D \ σ}.

We call H1(D, σ) the harmonic space in the Cauchy problem with data on
σ. By the ellipticity assumption, the elements of H1(D, σ) are of class C∞ in
D.

Lemma 8.4 ker TD ∩ SB(D) = H1(D, σ).

Proof. Let g ∈ ker TD∩SB(D). From Theorem 6.2 it follows that A∗g = 0
in the sense of distributions on D. By the ellipticity of B ⊕ A∗ we conclude
that g ∈ C∞

loc(D, F ).
We next claim that n(g) = 0 weakly on ∂D \ σ. To prove this, we denote

by Dε the set of all x ∈ D such that dist(x, ∂D) > ε. For ε > 0 small enough,
Dε is also a domain with C∞ boundary. We shall have established the equality
n(g) = 0 on ∂D \ σ if we show that

lim
ε→0

∫
∂Dε

(t(u), n(g))x dsε = 0

for all u ∈ C∞(D̄, E) vanishing near σ. Here, dsε is the area element of the
surface ∂Dε.

Since g is C∞ in D, we get

lim
ε→0

∫
∂Dε

(t(u), n(g))x dsε = lim
ε→0

∫
Dε

(Au, g)x dx

=

∫
D

(Au, g)x dx

= hD(u, TDg)

= 0,
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the first equality being due to Stokes’ formula and the equality A∗g = 0, the
second equality being a consequence of the fact that g ∈ L2(D, F ), and the
third one being due to Theorem 6.2. We have thus proved that ker TD∩SB(D)
is a subset of H1(D, σ).

Let us prove the opposite inclusion. Pick a g ∈ H1(D, σ). By ellipticity we
conclude that g ∈ C∞

loc(D, F ). For every u ∈ C∞
loc(D̄, E) vanishing near σ, we

have

hD (u, TDg) = lim
ε→0

∫
Dε

(Au, g)x dx

= lim
ε→0

∫
∂Dε

(t(u), n(g))x dsε

= 0.

Since such sections u are dense in Hm((D, σ), E), it follows that TDg = 0, as
desired.

�
It is worth pointing out that the spaceH1(D, σ) fails to be finite-dimension-

al in general.

9 Applications to Zaremba problem

In this section we assume that σ is the closure of an open subset in ∂D with
smooth boundary.

Let H−m((D, ∂D \σ), E) be the dual space for Hm((D, σ), E) with respect
to the pairing in L2(D, E). It coincides with the completion of C∞

comp(D∪σ, E)
with respect to the norm

‖F‖H−m((D,∂D\σ),E) = sup
v∈C∞

comp(D̄\σ,E)

|
∫

D
(F, v)x dx|

‖v‖Hm((D,σ),E)

.

Recall that for s ≥ 0 we write H−s(∂D\σ, Fj) for the dual of
◦

Hs(∂D\σ, Fj)
with respect to the pairing in L2(∂D \ σ, Fj), cf. Section 3. One can prove
that

H−s(∂D \ σ, Fj)
top.∼=

H−s(∂D, Fj)

H−s
σ (∂D, Fj)

where H−s
σ (∂D, Fj) is the subspace of H−s(∂D, Fj) consisting of the elements

with a support in σ.
By the above, the sesquilinear form∫

∂D

(u1, t(v))x ds
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is well defined for all

u1 ∈ ⊕m−1
j=0 H−m+mj+1/2(∂D \ σ, Fj),

v ∈ Hm((D, σ), E).

We are now in a position to consider the following generalised Zaremba
problem in D.

Problem 9.1 Given

F ∈ H−m((D, ∂D \ σ), E),
u1 ∈ ⊕m−1

j=0 H−m+mj+1/2(∂D \ σ, Fj),

find u ∈ Hm(D, E) such that
∆u = F in D,
t(u) = 0 on σ,

n(Au) = u1 on ∂D \ σ.

The equation ∆u = F has to be understood in the sense of distributions in
D, while the boundary conditions are interpreted in the following weak sense:
Find u ∈ Hm((D, σ), E) satisfying∫

D

(Au, Av)x dx =

∫
D

(F, v)x dx +

∫
∂D

(u1, t(v))x ds (9.1)

for all v ∈ Hm((D, σ), E).

We emphasise that the trace of n(Au) on ∂D \ σ is not defined for any
u ∈ Hm((D, σ), E), because the order of n ◦ A is equal to 2m − 1. To cope
with this, a familiar way is to assign an operator L with a dense domain
Dom L ↪→ Hm((D, σ), E) to Problem 9.1, such that n(Au) is well defined for
all u ∈ Dom L. In fact, Dom L is defined to be the completion of C∞

comp(D̄\σ, E)
with respect to the graph norm of u 7→ (u, n(Au)) in Hm((D, σ), E) ⊕N,
where

N = ⊕m−1
j=0 H−m+mj+1/2(∂D \ σ, Fj).

For more details, see Roitberg [5] and elsewhere. Then, (9.1) defines a
continuous operator Dom L → H−m((D, ∂D\σ), E)⊕N by Lu = (∆u, n(Au)).

If A is the gradient operator in Rn, then (9.1) is just the classical Zaremba
problem in D.

Lemma 9.2 Suppose F = 0 and u1 = 0. Then u ∈ Hm(D, E) is a solution
to Problem 9.1 if and only if u ∈ Hm((D, σ), E) ∩ SA(D).
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Proof. Obviously, any u ∈ Hm((D, σ), E) ∩ SA(D) is a solution of Prob-
lem 9.1 with F = 0 and u1 = 0.

Conversely, let u be a solution to Problem 9.1 with F = 0 and u1 = 0.
Substituting v = u to (9.1) implies Au = 0 whence u ∈ Hm((D, σ), E)∩SA(D),
as desired.

�
Lemma 9.2 shows that Problem 9.1 is not Fredholm in general, for the

space Hm((D, σ), E) ∩ SA(D) need not be finite-dimensional.

For any v ∈
◦

Hm(V, E), the restriction v |D belongs to Hm((D, σ), E). Hence
to each F ∈ H−m((D, ∂D \ σ), E) we can assign an element F̃ ∈ H−m(V, E)
by

(F̃ , v) = (F, v |D)

for all v ∈
◦

Hm(V, E). We will write F̃ simply χDF when no confusion can
arise. Therefore, the integral

G (χDF ) =

∫
D

(
F, ∗−1

E KG(x, ·)
)

y
dy

defines an element of Hm((D, σ), E), for any F ∈ H−m((D, ∂D \ σ), E).

Furthermore, since u 7→ t(u)⊕n(Au) is a Dirichlet system of order 2m− 1
on ∂D, for every data u1 ∈ N there exists a U ∈ Dom L with the property
that n(AU) = u1 on ∂D \σ (see for instance Lemma 9.2.17 of [9]). This means
that ∫

D

(AU,Av)x dx =

∫
D

(∆U, v)x dx +

∫
∂D

(u1, t(v))x ds

for all v ∈ Hm((D, σ), E). Set

Pslu1 (x) = −
∫

∂D

GA∗(KG(x, ·), AU)

=

∫
∂D

(
n(AU), t

(
∗−1

E KG(x, ·)
))

y
ds,

for x ∈ D.

This integral is well defined and it does not depend on the particular choice
of U . Indeed, since ∆U ∈ H−m((D, ∂D \ σ), E) we conclude, by Stokes’
formula, that

Pslu1 = GA∗ (χDAU)−G (χD∆U)

= TDAU −G (χD∆U) ,

which is in Hm((D, σ), E).
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Let now U ∈ Dom L be such that n(AU) = 0 on ∂D \ σ. Then using
Theorem 3.3 yields∫

X

(
−

∫
∂D

GA∗(KG(x, ·), AU), v

)
x

dx =

∫
X

(GA∗χDAU −GχD∆U, v)x dx

=

∫
X

(A∗χDAU − χD∆U,Gv)x dx

=

∫
D

(AU,AGv)x dx−
∫

D

(∆U,Gv)x dx

= 0

for all v ∈ C∞
comp(X, E), because Gv ∈ Hm((D, σ), E). Hence, Pslu1 is inde-

pendent of the choice of U .

Theorem 9.3 Problem 9.1 is solvable if and only if
1) ∫

D

(F, v)x dx +

∫
∂D

(u1, t(v))x ds = 0

for all v ∈ Hm((D, σ), E) ∩ SA(D);
2) the series

R(F, u1) =
∞∑

ν=0

(HD + MD)ν (G(χDF ) + Pslu1)

converges in the Hm(D, E) -norm.
If 1) and 2) hold then R(F, u1) is a solution to Problem 9.1.

Proof. Let Problem 9.1 be solvable and let u ∈ Hm((D, σ), E) be a solu-
tion. Then

TDAu = G (χD∆u)−
∫

∂D

GA∗(KG(x, ·), Au)

= G (χDF ) + Pslu1,

and so the series R(F, u1) = RAu converges in the Hm(D, E) -norm, which is
due to Corollary 7.2.

Conversely, assume that 1) and 2) are fulfilled. Let us prove that the series
R(F, u1) satisfies (9.1). Indeed, by Theorem 6.1∫

D

(AR(F, u1), Av)x dx = hD (G (χDF ) + Pslu1, v)

= hD (G (χDF ) + GA∗ (χDAU)−G (χD∆U) , v)
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with a section U ∈ Dom L such that n(AU) = u1 on ∂D \ σ.
Using Theorem 3.3 we see that e(GF̃ ) = GF̃ for all F̃ ∈ H−m(V, E) satis-

fying F̃ −HF̃ = 0 in X \ D̄. We next apply this equality with

F̃ = χDF + A∗ (χDAU)− χD∆U.

We have ∫
X

(
F̃ , v

)
x
dx =

∫
D

(F −∆U, v)x dx

=

∫
D

(F, v)x dx +

∫
∂D

(n(AU), t(v))x ds

= 0

for all v ∈ Hm((D, σ), E) ∩ SA(D), the last equality being a consequence of
condition 1). Hence it follows readily that HF̃ = 0 in V , and so F̃ −HF̃ = 0
in X \ D̄.

Therefore, e(GF̃ ) = GF̃ and we get∫
D

(AR(F, u1), Av)x dx = h
(
e(GF̃ ), e(v)

)
=

∫
X

(
AGF̃ ,Ae(v)

)
x
dx +

∫
X

(
HGF̃ ,He(v)

)
x
dx

=

∫
X

(
F̃ , G∆e(v)

)
x
dx

=

∫
X

(
F̃ , e(v)−He(v)

)
x
dx

=

∫
D

(F −∆U, e(v))x dx +

∫
D

(AU,Ae(v))x dx

=

∫
D

(F, v)x dx +

∫
∂D

(n(AU), t(v))x ds

for all v ∈ Hm((D, σ), E). Here, the fifth equality is due to condition 1)
and the fact that He(v) ∈ Hm((D, σ), E) ∩ SA(D), and the last equality is a
consequence of Stokes’ formula. We have arrived at (9.1), thus proving the
theorem.

�
Corollary 7.2 implies that the solution R(F, u1) to Problem 9.1 lies in the

orthogonal complement of Hm((D, σ), E) ∩ SA(D) in Hm((D, σ), E) with re-
spect to the scalar product hD(·, ·). Moreover, R(F, u1) is the unique solution
belonging to this subspace. The partial sums RN(F, u1) of the series R(F, u1)
may be regarded as approximate solutions to Problem 9.1, provided that F
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and u1 meet condition 1) of Theorem 9.3. The sequence RN(F, u1) has the
following property:

|
∫

D

(ARN(F, u1), Av)x dx−
∫

D

(F, v)y dy −
∫

∂D

(u1, t(v))x ds|

≤ c ‖MN+1
D (G(χDF ) + Pslu1) ‖Hm(D,E)‖v‖Hm(D,E) (9.2)

for all v ∈ Hm((D, σ), E), with c a constant independent of N and v. Indeed,
as we have seen above (cf. (7.4)),

TDARN(F, u1) = (G(χDF ) + Pslu1)−MN+1
D (G(χDF ) + Pslu1)

whence∫
D

(ARN(F, u1), Av)x dx

= hD (TDARN(F, u1), v)

= hD

(
(G(χDF ) + Pslu1)−MN+1

D (G(χDF ) + Pslu1) , v
)

=

∫
D

(F, v)x dx +

∫
∂D

(u1, t(v))x ds− hD

(
MN+1

D (G(χDF ) + Pslu1) , v
)
.

The scalar product hD(·, ·) defines an equivalent norm, hence the estimate (9.2)
holds. Since G(χDF ) + Pslu1 is orthogonal to Hm((D, σ), E) ∩ SA(D) we see
that

lim
N→∞

‖MN+1
D (G(χDF ) + Pslu1) ‖Hm(D,E) = 0.

Of course, if Problem 9.1 is Fredholm then the series R(F, u1) converges
for all data F and u1.

In the setting of Example 5.2 such a theorem was proved in [8]. We can
also treat the inhomogeneous Zaremba problem.

Problem 9.4 Given

F ∈ H−m((D, ∂D \ σ), E),
u0 ∈ ⊕m−1

j=0 Hm−mj−1/2(σ, Fj),
u1 ∈ ⊕m−1

j=0 H−m+mj+1/2(∂D \ σ, Fj),

find u ∈ Hm(D, E) such that
∆u = F in D,
t(u) = u0 on σ,

n(Au) = u1 on ∂D \ σ.

Indeed, using the potential MDt−1u0 as in Section 4, we easily reduce it to
Problem 9.1.
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