Green Integrals on Manifolds with Cracks

B.-W. Schulze
A. Shlapunov *
N. Tarkhanov

May 29, 2000

[^0]
Abstract

We prove the existence of a limit in $H^{m}(D)$ of iterations of a double layer potential constructed from the Hodge parametrix on a smooth compact manifold with boundary, X, and a crack $S \subset \partial D, D$ being a domain in X. Using this result we obtain formulas for Sobolev solutions to the Cauchy problem in D with data on S, for an elliptic operator A of order $m \geq 1$, whenever these solutions exist. This representation involves the sum of a series whose terms are iterations of the double layer potential. A similar regularisation is constructed also for a mixed problem in D.

Contents

1 Introduction 4
2 Preliminary results 4
3 Hodge theory on manifolds with cracks 7
4 Green formulas on manifolds with cracks 14
5 Examples 18
6 Construction of the scalar product $h_{D}(\cdot, \cdot) \quad 19$
7 Iterations of potentials 21
8 Cauchy problem 24
9 Applications to Zaremba problem 27
References 33

1 Introduction

This paper is based on the following simple observation. Consider an operator equation $A u=f$ with a bounded operator $A: H_{0} \rightarrow H_{1}$ in Hilbert spaces. Suppose each element $u \in H_{0}$ can be written in the form $u=\pi_{0} u+\pi_{1} A u$ where π_{0} is a projection onto the kernel of A in H_{0}. Then it is to be expected that under reasonable conditions the element $\pi_{1} f$ defines a solution to the equation $A u=f$.

For the Cauchy-Riemann operator $A=\bar{\partial}$ in $\mathbb{C}^{n}, n>1$, the double layer potential involved in the regularisation formula is just the Martinelli-Bochner integral. In this case, results similar to ours were obtained by Romanov [6].

Theorem 1.1 Let D be a bounded domain in \mathbb{C}^{n}, $n>1$, with a connected boundary of class C^{1}, and Mu stand for the Martinelli-Bochner integral of a function $u \in H^{1}(D)$. Then the limit $\lim _{N \rightarrow \infty} M^{N}$ exists in the strong operator topology of $H^{1}(D)$, and it is equal to π_{0}, a projection onto the (closed) subspace of holomorphic functions in $H^{1}(D)$.

By using this result Romanov [6] obtained an explicit formula for a solution $u \in H^{1}(D)$ to $\bar{\partial} u=f$, where D is a pseudoconvex domain with a smooth boundary, and f a $\bar{\partial}$-closed $(0,1)$-form with coefficients in $H^{1}(D)$.

2 Preliminary results

Let X be a C^{∞} manifold of dimension n with a smooth boundary ∂X. We tacitly assume that it is enclosed into a smooth closed manifold \tilde{X} of the same dimension.

For any smooth \mathbb{C}-vector bundles E and F over X, we write $\operatorname{Diff}^{m}(X ; E, F)$ for the space of all linear partial differential operators of order $\leq m$ between sections of E and F.

Denote E^{*} the conjugate bundle of E. Any Hermitian metric $(., .)_{x}$ on E gives rise to a sesquilinear bundle isomorphism $*_{E}: E \rightarrow E^{*}$ by the equality $\left\langle *_{E} v, u\right\rangle_{x}=(u, v)_{x}$ for all sections u and v of E.

Pick a volume form $d x$ on X, thus identifying dual and conjugate bundles. For $A \in \operatorname{Diff}^{m}(X ; E, F)$, denote by $A^{\prime} \in \operatorname{Diff}^{m}\left(X ; F^{*}, E^{*}\right)$ the transposed operator and by $A^{*} \in \operatorname{Diff}^{m}(X ; F, E)$ the formal adjoint operator. We obviously have $A^{*}=*_{E}^{-1} A^{\prime} *_{F}$, cf. [9, 4.1.4] and elsewhere.

For an open set $O \subset X$, we write $L^{2}(O, E)$ for the Hilbert space of all measurable sections of E over O with a finite norm $(u, u)_{L^{2}(O, E)}=\int_{O}(u, u)_{x} d x$. When no confusion can arise, we also denote $H^{m}(O, E)$ the Sobolev space of distribution sections of E over O, whose weak derivatives up to order m belong to $L^{2}(O, E)$.

Given any open set O in $\stackrel{\circ}{X}$, the interior of X, we let $\mathcal{S}_{A}(O)$ stand for the space of weak solutions to the equation $A u=0$ in O. We also denote by $\mathcal{S}_{A}^{m}(O)$ the closed subspace of $H^{m}(O, E)$ consisting of all weak solutions to $A u=0$ in O.

Write $\sigma(A)$ for the principal homogeneous symbol of order m of the operator $A, \sigma(A)$ living on the cotangent bundle $T^{*} X$ of X. From now on we assume that $\sigma(A)$ is injective away from the zero section of $T^{*} X$. Hence it follows that the Laplacian $\Delta=A^{*} A$ is an elliptic differential operator of order $2 m$ on X.

Let σ be a compact subset in $\stackrel{\circ}{X}$. In fact, we assume that σ lies on a smooth closed hypersurface S in X. Our goal will be to construct the Hodge theory of the Dirichlet problem for the Laplacian Δ on the manifold $V=\stackrel{\circ}{X} \backslash \sigma$ with a crack along σ.

Crack problems are usually treated in the framework of analysis on manifolds with edges, cf. Schulze [7]. One thinks of the boundary of σ on S as an edge of V, the cross-section being a 2 -dimensional plane with a cut along a ray. The relevant function spaces are therefore weighted Sobolev spaces $H^{s, w}((V, \partial \sigma), E)$ of smoothness s and weight w, both s and w being real numbers. Recall that if $s \in \mathbb{Z}_{+}$it coincides with the completion of sections of E over V, C^{∞} up to the boundary and vanishing near $\partial \sigma$, with respect to the norm

$$
\|u\|_{H^{s, w}((V, \partial \sigma), E)}=\left(\sum_{\nu} \int \sum_{|\alpha| \leq s} \operatorname{dist}(x, \partial \sigma)^{2(|\alpha|-w)}\left|D^{\alpha}\left(\varphi_{\nu} u\right)\right|^{2} d x\right)^{1 / 2}
$$

where $\left(\varphi_{\nu}\right)$ is a partition of unity subordinate to a suitable finite open covering $\left(O_{\nu}\right)$ of X.

However, we will deal with the very particular case $H^{m, m}((V, \partial \sigma), E)$ which allows us to restrict ourselves to the usual Sobolev spaces on X.

Namely, let $H^{m}((V, \partial \sigma), E)$ be the closure of all sections of E over V, C^{∞} up to the boundary and vanishing close to $\partial \sigma$, in $H^{m}(V, E)$.

Theorem 2.1 If the boundary of σ is smooth, then $H^{m, m}((V, \partial \sigma), E)$ and $H^{m}((V, \partial \sigma), E)$ coincide as topological vector spaces.

Proof. Obviously, it is sufficient to show that the $H^{m, m}((V, \partial \sigma), E)$ - and $H^{m}(V, E)$-norms are equivalent on sections of E over V, C^{∞} up to the boundary and vanishing close to $\partial \sigma$. Without loss of generality we can consider those sections u whose supports are contained in the domain O_{ν} of some chart on X.

If O_{ν} does not meet $\partial \sigma$ then $\operatorname{dist}(x, \partial \sigma)$ is strictly positive in O_{ν}. Hence the $H^{m, m}((V, \partial \sigma), E)$ - and $H^{m}(V, E)$-norms are equivalent on sections of E with a support in O_{ν}.

In the case $O_{\nu} \cap \partial \sigma \neq \emptyset$ we choose local coordinates $x=\left(x_{1}, \ldots, x_{n}\right)$ in O_{ν}, such that $O_{\nu} \cap \sigma$ is the half-plane $\left\{x_{n}=0, x_{n-1} \leq 0\right\}$. Write $x=\left(x^{\prime}, x_{n-1}, x_{n}\right)$ where $x^{\prime}=\left(x_{1}, \ldots, x_{n-2}\right)$. We restrict ourselves to sections $u=u\left(x^{\prime}, x_{n-1}, x_{n}\right)$ supported in $Q \times B$, with Q a rectangle in \mathbb{R}^{n-2}, and B a disk with centre 0 and radius $R \gg 1$.

Since

$$
\|u\|_{H^{m, m}((V, \partial \sigma), E)}^{2}=\int \sum_{|\alpha| \leq m} \operatorname{dist}(x, \partial \sigma)^{2(|\alpha|-m)}\left|D^{\alpha} u\right|^{2} d x,
$$

the $H^{m}(V, E)$-norm is obviously dominated by the $H^{m, m}((V, \partial \sigma), E)$-norm whence

$$
H^{m, m}((V, \partial \sigma), E) \hookrightarrow H^{m}((V, \partial \sigma), E) .
$$

On the other hand, the summands involving the derivatives of order m in the norms $\|u\|_{H^{m, m}((V, \partial \sigma), E)}$ and $\|u\|_{H^{m}(V, E)}$ coincide. To handle lower order summands, we fix a multi-index $\alpha \in \mathbb{Z}_{+}^{n}$ with $0 \leq|\alpha| \leq m-1$. Introduce polar coordinates

$$
\left\{\begin{array}{rlr}
x_{n-1} & =r \cos \varphi, \\
x_{n} & =r \sin \varphi
\end{array}\right.
$$

in B, and set $U(r)=D^{\alpha} u\left(x^{\prime}, r \cos \varphi, r \sin \varphi\right)$. Then

$$
\int \operatorname{dist}(x, \partial \sigma)^{2(|\alpha|-m)}\left|D^{\alpha} u\right|^{2} d x=\int_{Q} d x^{\prime} \int_{-\pi}^{\pi} d \varphi \int_{0}^{R}\left|r^{|\alpha|-m} U(r)\right|^{2} r d r .
$$

We next make use of a Hardy-Littlewood inequality for measurable functions on the semiaxis with values in a normed space. Namely,

$$
\left\|r^{p-1} \int_{0}^{r} f(\varrho) d \varrho\right\|_{L^{q}\left(\mathbb{R}_{+}\right)} \leq\left(\frac{1}{q^{\prime}}-p\right)^{-1}\left\|r^{p} f(r)\right\|_{L^{q}\left(\mathbb{R}_{+}\right)}
$$

where $1 \leq q \leq \infty, 1 / q+1 / q^{\prime}=1$ and $p<1 / q^{\prime}$. Take $f(r)=(\partial / \partial r) U(r)$ and observe that

$$
\begin{aligned}
\left|f^{\prime}(r)\right| & =\left|D^{\alpha+1_{n-1}} u \cos \varphi+D^{\alpha+1_{n}} u \sin \varphi\right| \\
& \leq\left|D^{\alpha+1_{n-1}} u\right|+\left|D^{\alpha+1_{n}} u\right|
\end{aligned}
$$

1_{j} being the multi-index from \mathbb{Z}_{+}^{n} which is 1 in the j-th place and 0 in each other one. Repeated application of the Hardy-Littlewood inequality therefore yields

$$
\int \operatorname{dist}(x, \partial \sigma)^{2(|\alpha|-m)}\left|D^{\alpha} u\right|^{2} d x \leq c\left\|D^{\alpha} u\right\|_{H^{m-|\alpha|}(V, E)}^{2}
$$

with c a constant independent of u.

Summarising we conclude that the $H^{m, m}((V, \partial \sigma), E)$-norm is majorised by the $H^{m}(V, E)$-norm on functions vanishing near $\partial \sigma$. This completes the proof.

More generally, given an open set $O \subset X$ and a closed set $\sigma \subset X$, we denote $H^{m}((O, \sigma), E)$ the closure of all sections of E over O, C^{∞} up to the boundary and vanishing near σ, in $H^{m}(O, E)$. If $\sigma=\partial O$, we obtain what is usually referred to as

$$
\stackrel{\circ}{H}^{m}(O, E) .
$$

Fix a Dirichlet system $B_{j}, j=0,1, \ldots, m-1$, of order $m-1$ on the boundary of V. More precisely, each B_{j} is a differential operator of type $E \rightarrow F_{j}$ and order $m_{j} \leq m-1$ in a neighbourhood U of $\partial X \cup S$. Moreover, the symbols $\sigma\left(B_{j}\right)$, if restricted to the conormal bundle of $\partial X \cup S$, have ranks equal to the dimensions of F_{j}.

Set $t(u)=\oplus_{j=0}^{m-1} B_{j} u$, for $u \in H^{m}(V, E)$. It follows from the results of Hedberg [1] that

$$
\begin{equation*}
\stackrel{\circ}{H}^{m}(V, E)=\left\{u \in H^{m}(X, E): t(u)=0 \quad \text { on } \partial X \cup \sigma\right\}, \tag{2.1}
\end{equation*}
$$

$\partial X \cup \sigma$ being the boundary of V.
Corollary 2.2 Suppose $\partial \sigma$ is smooth. Then we have a topological isomorphism

$$
\stackrel{\circ}{H}^{m}(V, E) \cong\left\{u \in H^{m, m}((V, \partial \sigma), E): t(u)=0 \quad \text { on } \partial X \cup \stackrel{\circ}{\sigma}\right\},
$$

the space on the right-hand side being endowed with the norm induced from $H^{m, m}((V, \partial \sigma), E)$.

Proof. By Theorem 2.1 it suffices to show that $\stackrel{\circ}{H}^{m}(V, E)$ consists of all $u \in H^{m}((V, \partial \sigma), E)$ such that $t(u)=0$ on ∂V.

On the one hand, if $u \in \stackrel{\circ}{H^{m}}(V, E)$ then $u \in H^{m}((V, \partial \sigma), E)$ and $t(u)=0$ on ∂V, as is easy to see.

On the other hand, if $u \in H^{m}((V, \partial \sigma), E)$ and $t(u)=0$ on ∂V then $u \in$ $H^{m}((V, \partial V), E)$, as follows from [1]. This just amounts to the desired assertion.

3 Hodge theory on manifolds with cracks

Let $H^{-m}(V, E)$ denote the dual space of $H^{m}(V, E)$ with respect to the pairing in $L^{2}(V, E)$. This is not a canonical definition, we rather follow the notation of [9, 1.4.9].

For every $u \in H^{m}(V, E)$, the correspondence

$$
v \mapsto \int_{V}(A u, A v)_{x} d x
$$

is a continuous conjugate linear functional on $\stackrel{\circ}{H}^{m}(V, E)$. Thus, the Laplacian $\Delta=A^{*} A$ extends to a mapping $H^{m}(V, E) \rightarrow H^{-m}(V, E)$.

The following boundary value problem is a straightforward generalisation of the classical Dirichlet problem, cf. [9, 9.2.4].

Problem 3.1 Given an $F \in H^{-m}(V, E)$, find a section $u \in H^{m}(X, E)$ such that

$$
\left\{\begin{array}{rlll}
\Delta u & = & F & \text { in } \\
t(u) & = & 0 & \text { on } \\
t & \partial V .
\end{array}\right.
$$

Another way of stating the problem is to say, "Study the restriction of Δ to $\stackrel{\circ}{H}^{m}(V, E)$."

If $u \in \stackrel{\circ}{H}^{m}(V, E)$ and $\Delta u=0$, then $A u=0$ in V. In the sequel, $\mathcal{H}(V)$ stands for

$$
\stackrel{\circ}{H}^{m}(V, E) \cap \mathcal{S}_{A}(V)
$$

Furthermore, we let $\mathcal{H}^{\perp}(V)$ consist of all sections $F \in H^{-m}(V, E)$ satisfying

$$
\int_{V}(F, v)_{x} d x=0
$$

for any $v \in \mathcal{H}(V)$.
Lemma 3.2 Problem 3.1 is Fredholm. The difference of any two solutions lies in $\mathcal{H}(V)$. The problem is solvable if and only if $F \in \mathcal{H}^{\perp}(V)$. Moreover, there is a constant $c>0$ such that for any solution $u \in \mathcal{H}^{\perp}(V)$ to Problem 3.1, we have

$$
\begin{equation*}
\|u\|_{H^{m}(X, E)} \leq c\|F\|_{H^{-m}(V, E)} . \tag{3.1}
\end{equation*}
$$

Proof. By definition, the equality $\Delta u=F$ means that

$$
\begin{equation*}
\int_{V}(A u, A v)_{x} d x=\int_{V}(F, v)_{x} d x \tag{3.2}
\end{equation*}
$$

for all $v \in \stackrel{\circ}{H}^{m}(V, E)$. We are thus looking for a section $u \in \stackrel{\circ}{H}^{m}(V, E)$ satisfying (3.2).

It readily follows from (3.2) that the null-space of Problem 3.1 is just $\mathcal{H}(V)$. Since

$$
\stackrel{\circ}{H}^{m}(V, E) \hookrightarrow H^{m}(X, E)
$$

and σ is a set of zero measure in $\stackrel{\circ}{X}$, we deduce that

$$
\mathcal{H}(V) \hookrightarrow \stackrel{\circ}{H}^{m}(\stackrel{\circ}{X}, E) \cap \mathcal{S}_{A}(\stackrel{\circ}{X})
$$

the space on the right-hand side being $\mathcal{H}\left(\circ_{X}\right)$. Taking into account that the boundary of X is smooth, we deduce that $\mathcal{H}(V)$ is a finite-dimensional subspace of $C^{\infty}(X, E)$.

That the condition $F \in \mathcal{H}^{\perp}(V)$ is necessary for the problem to be solvable, follows from (3.2) immediately. Let us prove the sufficiency.

To this end, we invoke the classical Gårding inequality. Namely, as A has injective symbol, we have

$$
\begin{equation*}
\|u\|_{H^{m}(X, E)}^{2} \leq C \int_{X}(A u, A u)_{x} d x+c\|u\|_{L^{2}(X, E)}^{2} \tag{3.3}
\end{equation*}
$$

for all $u \in \stackrel{\circ}{H}^{m}(V, E)$, the constants C and c being independent of u (cf. for instance [10]).

A familiar argument shows that there is a constant $C>0$ with the property that

$$
\|u\|_{H^{m}(X, E)}^{2} \leq C \int_{X}(A u, A u)_{x} d x
$$

for each $u \in \stackrel{\circ}{H}^{m}(V, E) \cap \mathcal{H}^{\perp}(V)$. Indeed, we argue by contradiction. If there is no such constant then we can find a sequence $\left(u_{\nu}\right)$ in $\stackrel{\circ}{H}^{m}(V, E) \cap \mathcal{H}^{\perp}(V)$, such that

$$
\begin{aligned}
\left\|u_{\nu}\right\|_{H^{m}(X, E)} & =1 \\
\left\|A u_{\nu}\right\|_{L^{2}(X, F)} & <2^{-\nu} .
\end{aligned}
$$

As the unit ball in a separable Hilbert space is weakly compact, we can assume that $\left(u_{\nu}\right)$ converges weakly to a section $u_{\infty} \in \stackrel{\circ}{H}^{m}(V, E) \cap \mathcal{H}^{\perp}(V)$. It follows that

$$
\begin{aligned}
\int_{X}\left(u_{\infty}, A^{*} v\right)_{x} d x & =\lim _{\nu \rightarrow \infty} \int_{X}\left(u_{\nu}, A^{*} v\right)_{x} d x \\
& =\lim _{\nu \rightarrow \infty} \int_{X}\left(A u_{\nu}, v\right)_{x} d x \\
& =0
\end{aligned}
$$

for all $v \in C_{\text {comp }}^{\infty}(\stackrel{\circ}{X}, E)$, i.e. $u_{\infty} \in \mathcal{H}(V)$. We thus conclude that $u_{\infty}=0$. But the Gårding inequality yields

$$
1 \leq C 2^{-\nu}+c\left\|u_{\nu}\right\|_{L^{2}(X, E)}
$$

for all ν. Since the inclusion $\stackrel{\circ}{H}^{m}(V, E) \hookrightarrow L^{2}(X, E)$ is compact, and thus u_{ν} converges strongly to u_{∞} in $L^{2}(X, E)$, we get

$$
\left\|u_{\infty}\right\|_{L^{2}(X, E)} \geq 1 / c,
$$

which contradicts $u_{\infty}=0$.
We have thus proved that the Hermitian form

$$
\int_{X}(A u, A v)_{x} d x
$$

defines a scalar product in the Hilbert space $\stackrel{\circ}{H}^{m}(V, E) \cap \mathcal{H}^{\perp}(V)$, the corresponding norm being equivalent to the original one. Now the Riesz Theorem enables us to assert that for every $F \in H^{-m}(V, E)$ there exists a unique section

$$
u \in \stackrel{\circ}{H}^{m}(V, E) \cap \mathcal{H}^{\perp}(V)
$$

satisfying

$$
\int_{V}(F, v)_{x} d x=\int_{X}(A u, A v)_{x} d x
$$

for all $v \in \stackrel{\circ}{H}^{m}(V, E) \cap \mathcal{H}^{\perp}(V)$.
Obviously, every $v \in \stackrel{\circ}{H}^{m}(V, E)$ can be written in the form $v=v_{1}+v_{2}$, with

$$
\begin{aligned}
& v_{1} \in \mathcal{H}(V), \\
& v_{2} \in \stackrel{\circ}{H^{m}}(V, E) \cap \mathcal{H}^{\perp}(V) .
\end{aligned}
$$

It follows that if $F \in \mathcal{H}^{\perp}(V)$ then u satisfies (3.2) for all $v \in \stackrel{\circ}{H}^{m}(V, E)$, as desired.

Finally, since for any section $F \in H^{-m}(V, E)$ "orthogonal" to $\mathcal{H}(V)$ there is a unique solution to Problem 3.1 in

$$
\stackrel{\circ}{H}^{m}(V, E) \cap \mathcal{H}^{\perp}(V),
$$

the estimate (3.1) follows from the Open Map Theorem.
We are now in a position to derive a Hodge decomposition for the Dirichlet problem in V.

Theorem 3.3 There are bounded linear operators

$$
\begin{aligned}
H: & H^{-m}(V, E) \\
G: & \rightarrow \mathcal{H}(V), \\
G & H^{-m}(V, E)
\end{aligned} \rightarrow \stackrel{\circ}{H^{m}}(V, E) \cap \mathcal{H}^{\perp}(V), ~ l
$$

such that

1) H is the $L^{2}(V, E)$-orthogonal projection onto the space $\mathcal{H}(V)$, with a kernel $K_{H}(x, y)=\sum_{j} h_{j}(x) \otimes *_{E} h_{j}(y)$ where $\left(h_{j}\right)$ is an orthogonal basis of $\mathcal{H}(V)$;
2) $A H=0$ and $G H=H G=0$;
3)

$$
\begin{aligned}
G \Delta u & =u-H u \quad \text { for all } u \in \dot{H}^{m}(V, E) \\
\Delta G F & =F-H F \quad \text { for all } F \in H^{-m}(V, E) .
\end{aligned}
$$

Proof. As already mentioned in the proof of Lemma 3.2, $\mathcal{H}(V)$ is a finitedimensional subspace of $C^{\infty}(X, E)$. Denote H the $L^{2}(V, E)$-orthogonal projection onto $\mathcal{H}(V)$. Fix an orthogonal basis $\left(h_{j}\right)$ for $\mathcal{H}(V)$. Then H has the kernel

$$
K_{H}(x, y)=\sum_{j} h_{j}(x) \otimes *_{E} h_{j}(y)
$$

because

$$
(H F)(x)=\sum_{j}\left(\int_{V}\left(F(y), h_{j}(y)\right)_{y} d y\right) h_{j}(x)
$$

for all $F \in L^{2}(V, E)$. Since H is a smoothing operator it extends to all of $H^{-m}(V, E)$, too, by

$$
(H F)(x)=\left\langle K_{H}(x, \cdot), F\right\rangle_{V},
$$

for $x \in V$. Clearly,

$$
H: H^{-m}(V, E) \rightarrow \mathcal{H}(V) \hookrightarrow \stackrel{\circ}{H}^{m}(V, E)
$$

is bounded and $A H=0$.
Pick $F \in H^{-m}(V, E)$. Since $K_{H}(x, y)^{*}=K_{H}(y, x)$ we get

$$
\begin{aligned}
\int_{V}(F-H F, v)_{x} d x & =\int_{V}(F-H F, H v)_{x} d x \\
& =\int_{V}\left(H F-H^{2} F, v\right)_{x} d x \\
& =\int_{V}(H F-H F, v)_{x} d x \\
& =0
\end{aligned}
$$

for all $v \in \mathcal{H}(V)$, i.e.,

$$
F-H F \in \mathcal{H}^{\perp}(V)
$$

Therefore, Lemma 3.2 implies that there exists a solution $u \in \stackrel{\circ}{H}^{m}(V, E)$ to $\Delta u=F-H F$ in V. Setting

$$
G F=u-H u
$$

we obtain

$$
F=H F+\Delta G F
$$

for all $F \in H^{-m}(V, E)$.
As $u-H u \in \mathcal{H}^{\perp}(V)$ we see from (3.1) that

$$
G: H^{-m}(V, E) \rightarrow \stackrel{\circ}{H}^{m}(V, E) \cap \mathcal{H}^{\perp}(V)
$$

is bounded. By definition, $H G F=H u-H^{2} u=0$ and $G H F=0$.
On the other hand, we easily obtain the $L^{2}(V, E)$-orthogonal decomposition

$$
\begin{aligned}
u & =H u+(u-H u) \\
& =H u+G \Delta u
\end{aligned}
$$

for all $u \in \stackrel{\circ}{H}^{m}(V, E)$. This completes the proof.
When restricted to $L^{2}(V, E)$, the operator G is selfadjoint. In fact, given any $F, v \in H^{-m}(V, E)$, we have

$$
\begin{aligned}
(G F, v) & =(G F, H v+\Delta G v) \\
& =(G F, \Delta G v) \\
& =(\Delta G F, G v) \\
& =(F, G v),
\end{aligned}
$$

(\cdot, \cdot) meaning the scalar product in $L^{2}(V, E)$. Hence it follows that the Schwartz kernel of G,

$$
K_{G}(\cdot, \cdot) \in \stackrel{\circ}{H}^{m}(V, E) \otimes \stackrel{\circ}{H}^{m}\left(V, E^{*}\right) \hookrightarrow \mathcal{D}^{\prime}\left(V \times V, E \otimes E^{*}\right),
$$

is Hermitian, i.e., $K_{G}(x, y)^{*}=K_{G}(y, x)$ for all $x, y \in V$.
Lemma 3.4 The operator $T=G A^{*}$ extends to a continuous linear mapping

$$
L^{2}(V, F) \rightarrow \stackrel{\circ}{H}^{m}(V, E)
$$

Proof. For any fixed $f \in L^{2}(V, F)$, the integral

$$
\int_{V}(f, A v)_{x} d x
$$

defines a continuous linear functional on $\stackrel{\circ}{H}^{m}(V, E)$. Hence, the (formal) adjoint A^{*} extends to a mapping $L^{2}(V, F) \rightarrow H^{-m}(V, E)$, which is obviously continuous. Since G maps $H^{-m}(V, E)$ continuously to ${ }^{H}{ }^{m}(V, E)$, the lemma follows.

As is easy to check by Stokes' formula, the Schwartz kernel of T is

$$
K_{T}(x, y)=\left(A^{*}(y, D)\right)^{\prime} K_{G}(x, y)
$$

the 'prime' meaning the transposed operator.
Using T, we may rewrite the Hodge decomposition of Theorem 3.3 in the form

$$
\begin{equation*}
u=H u+T A u \tag{3.4}
\end{equation*}
$$

over V, for each $u \in \stackrel{\circ}{H}^{m}(V, E)$.
We now introduce the Hermitian form

$$
h(u, v)=\int_{V}(H u, H v)_{x} d x+\int_{V}(A u, A v)_{x} d x
$$

defined for $u, v \in \stackrel{\circ}{H}^{m}(V, E)$

Theorem 3.5 The Hermitian form $h(\cdot, \cdot)$ is a scalar product in $\stackrel{\circ}{H}^{m}(V, E)$ defining a norm equivalent to the original one. The operator H is also an orthogonal projection from $\stackrel{\circ}{H}^{m}(V, E)$ onto $\mathcal{H}(V)$ with respect to $h(\cdot, \cdot)$. Moreover,

$$
h(T f, u)=\int_{V}(f, A u)_{x} d x
$$

for all $f \in L^{2}(V, F)$ and $u \in \stackrel{\circ}{H}^{m}(V, E)$.

Proof. The coefficients of A are C^{∞} up to the boundary of X, and so $A u \in L^{2}(V, F)$ for all $u \in \stackrel{\circ}{H}^{m}(V, E)$. Moreover, it follows from (3.4) that $h(u, u)=0$ implies $u \equiv 0$ in X. Hence $h(\cdot, \cdot)$ is a scalar product on $\stackrel{\circ}{H}^{m}(V, E)$.

Since H is a smoothing operator, the original norm of $\stackrel{\circ}{H}^{m}(V, E)$ is not weaker than $\sqrt{h(\cdot, \cdot)}$.

Further, (3.4) and Lemma 3.4 show that there exists a constant $c>0$ such that

$$
\|u\|_{H^{m}(V, E)} \leq c\left(\|H u\|_{H^{m}(V, E)}+\|A u\|_{L^{2}(V, F)}\right)
$$

for all $u \in \stackrel{\circ}{H}^{m}(V, E)$.
On the other hand, since H is a finite rank operator, there is a constant $C>0$ such that

$$
\|H u\|_{H^{m}(V, E)} \leq C\|H u\|_{L^{2}(V, E)}
$$

for all $u \in \stackrel{\circ}{H}^{m}(V, E)$. This proves the equivalence of the topologies.

Suppose $f \in C_{\text {comp }}^{\infty}(V, F)$ and $u \in \stackrel{\circ}{H}^{m}(V, E)$. By Theorem 3.3, we get $H T f=0$. Moreover,

$$
\begin{aligned}
\int_{V}\left(H A^{*} f, v\right)_{x} d x & =\int_{V}(f, A H v)_{x} d x \\
& =0
\end{aligned}
$$

for all $v \in L^{2}(V, E)$, whence $H A^{*} f=0$. Thus,

$$
\begin{aligned}
h(T f, u) & =\int_{V}\left(A G\left(A^{*} f\right), A u\right)_{x} d x \\
& =\int_{V}\left(\Delta G\left(A^{*} f\right), u\right)_{x} d x \\
& =\int_{V}\left(A^{*} f-H\left(A^{*} f\right), u\right)_{x} d x \\
& =\int_{V}(f, A u)_{x} d x
\end{aligned}
$$

As $C_{\text {comp }}^{\infty}(V, F)$ is dense in $L^{2}(V, F)$, we obtain the desired assertion on the integral T.

Finally, for any $u, v \in \stackrel{\circ}{H}^{m}(V, E)$, we have

$$
\begin{aligned}
h(H u, & =h(u, v)-h(T A u, v) \\
& =h(u, v)-\int_{V}(A u, A v)_{x} d x \\
& =\int_{V}(H u, H v)_{x} d x
\end{aligned}
$$

i.e., H is a selfadjoint operator in $\stackrel{\circ}{H}^{m}(V, E)$ with respect to the scalar product $h(\cdot, \cdot)$, and $H^{2}=H$, as desired.

4 Green formulas on manifolds with cracks

In this section we discuss Green formulas for sections of E on open subsets of V. To this end, we choose a Green operator $G_{A}(\cdot, \cdot)$ for A on X, cf. [9, 9.2.1]. Given an oriented hypersurface $S \subset X$, we denote $[S]^{A}$ the kernel over $X \times X$ defined by

$$
\left\langle[S]^{A}, g \otimes u\right\rangle_{X \times X}=\int_{S} G_{A}(g, u)
$$

for all $g \in C^{\infty}\left(X, F^{*}\right)$ and $u \in C^{\infty}(X, E)$ whose supports meet each other in a compact set.

In particular, the kernel $[\partial V]^{A}$ is supported by the hypersurface $\partial X \cup \sigma$. However, σ, if regarded as a part of the boundary of V, has two sides in X with opposite orientations. When applied to sections g and u whose derivatives up to order $m-1$ are continuous in a neighbourhood of σ, the kernel $[\partial V]^{A}$ does not include any integration over σ because the integrals over the sides with opposite orientations cancel. In general, the continuity up to the boundary in V does not assume that the limit values from both sides of σ coincide in the interior of σ on S. Hence, $[\partial V]^{A}$ actually includes, along with the integral over ∂X, the integral over σ of the difference of the limit values of $G_{A}(g, u)$ on S.

Away from the singularities of V, i.e., $\partial \sigma$, the Green operator G behaves like the Green function of an elliptic boundary value problem, cf. [5]. The edge $\partial \sigma$ is well known to cause additional singularities of the kernel of G on $(V \times \partial \sigma) \cup(\partial \sigma \times V)$.

Given any section $u \in H^{m}(V, E)$ vanishing in a neighbourhood of $\partial \sigma$, we set

$$
\begin{aligned}
(M u)(x) & =-G A^{*}\left([\partial V]^{A} u\right) \\
& =-\int_{\partial V} G_{A}\left(K_{T}(x, y), u(y)\right)
\end{aligned}
$$

for $x \in V$.
Theorem 4.1 As defined above, the operator M extends to a continuous mapping of $H^{m}(V, E)$, and

$$
\begin{equation*}
u=H u+T A u+M u \tag{4.1}
\end{equation*}
$$

for all $u \in H^{m}(V, E)$.
Proof. Given any $u \in H^{m}(V, E)$, we define $M u$ from the equality (4.1), namely

$$
M u=u-H u-T A u .
$$

Note that H is a smoothing operator in the sense that it extends naturally to a continuous mapping

$$
H^{-\infty}(V, E) \rightarrow \stackrel{\circ}{H}^{\infty}(V, E),
$$

where $\stackrel{\circ}{H}^{\infty}(V, E)$ is the projective limit of the family $\stackrel{\circ}{H}^{s}(V, E), s \in \mathbb{Z}_{+}$, and $H^{-\infty}(V, E)$ the dual space under the pairing induced from $L^{2}(V, E)$. Hence it follows, by Lemma 3.4, that M is a well-defined continuous mapping of $H^{m}(V, E)$.

We shall have established the theorem if we prove that the operator M defined from (4.1) is actually an appropriate extension of the operator M
given before Theorem 4.1. This is an easy consequence of Stokes' formula. Indeed, pick a $u \in H^{m}(V, E)$ vanishing near $\partial \sigma$. Combining Stokes' formula and Theorem 3.3, we get

$$
\begin{aligned}
(u-H u-T A u, v)_{L^{2}(V, E)} & =(u, v-H v)_{L^{2}(V, E)}-(A u, A G v)_{L^{2}(V, F)} \\
& =(u, v-H v-\Delta G v)_{L^{2}(V, E)}-\int_{\partial V} G_{A}\left(*_{F}(A G v), u\right) \\
& =\left(-T\left([\partial V]^{A} u\right), v\right)_{L^{2}(V, E)}
\end{aligned}
$$

for all $v \in C_{\text {comp }}^{\infty}(V, E)$. This shows that $M u=-T\left([\partial V]^{A} u\right)$ in (the interior of) V, as desired.

We now consider the inhomogeneous Dirichlet problem for the Laplacian Δ on V.

To this end, we first give a rigorous meaning to the boundary condition $t(u)=u_{0}$ on ∂V. If $\partial \sigma$ is sufficiently smooth, t induces a topological isomorphism

$$
\frac{H^{m}(V, E)}{\stackrel{\circ}{H^{m}}(V, E)} \cong \stackrel{ }{\rightrightarrows} \oplus_{j=0}^{m-1} H^{m-m_{j}-1 / 2}\left(\partial V, F_{j}\right)
$$

which is due to (2.1). Hence we can more generally interpret t as the quotient mapping

$$
\begin{equation*}
t: \quad H^{m}(V, E) \rightarrow \frac{H^{m}(V, E)}{H^{m}(V, E)}, \tag{4.2}
\end{equation*}
$$

the quotient on the right substituting the space of Dirichlet data on ∂V. We make use of the Hilbert structure in $H^{m}(V, E)$ to construct a continuous right inverse t^{-1} for t.

Problem 4.2 Given $F \in H^{-m}(V, E)$ and $u_{0} \in H^{m}(V, E) / \stackrel{\circ}{H}^{m}(V, E)$, find a section $u \in H^{m}(V, E)$ such that

$$
\left\{\begin{array}{rlll}
\Delta u & =F & \text { in } & V, \\
t(u) & =u_{0} & \text { on } & \partial V .
\end{array}\right.
$$

Lemma 4.3 Problem 4.2 is solvable if and only if $F \in \mathcal{H}^{\perp}(V)$. Moreover, for each $F \in \mathcal{H}^{\perp}(V)$,

$$
u=G F+M\left(t^{-1} u_{0}\right)
$$

is the solution to Problem 4.2 belonging to $H^{m}(V, E) \cap \mathcal{H}^{\perp}(V)$ and thus satisfying

$$
\begin{equation*}
\|u\|_{H^{m}(V, E)} \leq c\left(\|F\|_{H^{-m}(V, E)}+\left\|u_{0}\right\|_{\frac{H^{m}(V, E)}{H^{m}(V, E)}}\right) . \tag{4.3}
\end{equation*}
$$

Proof. The necessity of the condition $F \in \mathcal{H}^{\perp}(V)$ is obvious. What is left is to show that under this condition $u=G F+M\left(t^{-1} u_{0}\right)$ is the solution to Problem 4.2 in $H^{m}(V, E) \cap \mathcal{H}^{\perp}(V)$.

Indeed, Theorem 3.3 shows that $G F \in \stackrel{\circ}{H}^{m}(V, E)$ is "orthogonal" to $\mathcal{H}(M)$ and satisfies $\Delta(G F)=F$.

On the other hand, given any Dirichlet data u_{0}, we find a $U \in H^{m}(V, E)$ such that $t(U)=u_{0}$ on ∂V. Note that $M U$ is actually independent of the particular choice of U, for if $U^{\prime}, U^{\prime \prime} \in H^{m}(V, E)$ satisfy

$$
\begin{aligned}
t\left(U^{\prime}\right) & =u_{0}, \\
t\left(U^{\prime \prime}\right) & =u_{0}
\end{aligned}
$$

then $U^{\prime}-U^{\prime \prime} \in \stackrel{\circ}{H}^{m}(V, E)$ whence

$$
\begin{aligned}
M U^{\prime} & =M U^{\prime \prime}+M\left(U^{\prime}-U^{\prime \prime}\right) \\
& =M U^{\prime \prime}+\left(U^{\prime}-U^{\prime \prime}\right)-H\left(U^{\prime}-U^{\prime \prime}\right)-G \Delta\left(U^{\prime}-U^{\prime \prime}\right) \\
& =M U^{\prime \prime},
\end{aligned}
$$

the last equality being a consequence of Theorem 3.3. Using Theorem 4.1 we get

$$
\begin{aligned}
\Delta M U & =\Delta(U-H U-G \Delta U) \\
& =\Delta U-(\Delta U-H \Delta U) \\
& =0
\end{aligned}
$$

and

$$
\begin{aligned}
t(M U) & =t(U-H U-G \Delta U) \\
& =t(U) \\
& =u_{0} .
\end{aligned}
$$

Finally, the section $M U$ is "orthogonal" to $\mathcal{H}(V)$ because so are both $U-H U$ and $G \Delta U$.

Summarising we conclude that $u=G F+M U$ gives a canonical solution to Problem 4.2, as desired. The estimate (4.3) is a consequence of the Open Map Theorem.

Let D be a relatively compact domain (i.e. open connected subset) in $\stackrel{\circ}{X}$ with a smooth boundary $(S=) \partial D$ containing σ.

For

$$
\begin{aligned}
& u \in H^{m}(D, E), \\
& f \in L^{2}(D, F),
\end{aligned}
$$

we consider the integrals

$$
\begin{aligned}
H_{D} u & =H\left(\chi_{D} u\right), \\
T_{D} f & =T\left(\chi_{D} f\right), \\
M_{D} u & =-T\left([\partial D]^{A} u\right)
\end{aligned}
$$

in V, where χ_{D} is the characteristic function of D in X. Analysis similar to that in the proof of Theorem 4.1 actually shows that

$$
\begin{equation*}
\chi_{D} u=H_{D} u+T_{D} A u+M_{D} u \tag{4.4}
\end{equation*}
$$

over V, for every $u \in H^{m}(D, E)$.
Lemma 4.4 As defined above, the integrals H_{D}, T_{D} and M_{D} induce bounded operators

$$
\begin{aligned}
H_{D}: H^{m}(D, E) & \rightarrow H^{m}((D, \sigma), E), \\
T_{D}: & L^{2}(D, F)
\end{aligned} \rightarrow H^{m}((D, \sigma), E),
$$

Proof. We first observe that the space $H^{m}((D, \sigma), E)$ coincides with the restriction of $\stackrel{\circ}{H}^{m}(V, E)$ to D.

Since H extends to a continuous mapping $H^{-\infty}(V, E) \rightarrow \mathcal{H}(V)$, the boundedness of H_{D} is clear.

Suppose $f \in L^{2}(D, F)$. Then $\chi_{D} f$ is naturally regarded as the extension of f to a section in $L^{2}(X, F)$ by zero. We have $T_{D} f=T\left(\chi_{D} f\right)$, and so the mapping $T_{D}: L^{2}(D, F) \rightarrow H^{m}((D, \sigma), E)$ is continuous, which is due to Lemma 3.4.

Finally, in order to complete the proof it is sufficient to invoke the equality $M_{D}=\operatorname{Id}-H_{D}-T_{D} A$ in D.

5 Examples

Example 5.1 Let X be a bounded domain with smooth boundary in \mathbb{R}^{n}, $n>1$, and A an operator with injective symbol in a neighbourhood \tilde{X} of \bar{X}. Assume that A fulfills the uniqueness condition for the Cauchy problem in the small on \tilde{X}. Write G for the Green function of the Dirichlet problem for the Laplacian $\Delta=A^{*} A$ in X. In [3], a scalar product $h_{D}(\cdot, \cdot)$ on $H^{m}(D, E)$ is constructed, such that the corresponding norm is equivalent to the original one and the operator T_{D} is adjoint to $A: H^{m}(D, E) \rightarrow L^{2}(D, F)$ with respect to $h_{D}(\cdot, \cdot)$, i.e.

$$
h_{D}\left(T_{D} f, v\right)=\int_{D}(f, A v)_{x} d x
$$

for all $f \in L^{2}(D, F)$ and $v \in H^{m}(D, F)$. This implies that the iterations of the double layer potential M_{D} in $H^{m}(D, F)$ converge to the projection onto the subspace $H^{m}(D, E) \cap \mathcal{S}_{A}(D)$. This case corresponds to the Hodge decomposition for the Dirichlet problem in X with empty crack σ and $\mathcal{H}(V)$ being trivial.

Recall that $H^{m}((D, \sigma), E)$ just amounts to the subspace of $H^{m}(D, E)$ consisting of all u with $t(u)=0$ on σ.

Example 5.2 Under the assumptions of Example 5.1, let moreover X have a crack along a closed piece σ of a smooth hypersurface in X. We denote G the Green function of the Dirichlet problem for the Laplacian Δ in $V=X \backslash \sigma$. In our paper [8], a scalar product $h_{D}(\cdot, \cdot)$ on $H^{m}((D, \sigma), E)$ is constructed, defining an equivalent topology on this space and such that the operator T_{D} is actually adjoint to $A: H^{m}((D, \sigma), E) \rightarrow L^{2}(D, F)$ with respect to $h_{D}(\cdot, \cdot)$, i.e.,

$$
h_{D}\left(T_{D} f, v\right)=\int_{D}(f, A v)_{x} d x
$$

for all $f \in L^{2}(D, F)$ and $v \in H^{m}((D, \sigma), E)$. When combined with a general result of functional analysis, this implies that the limit of iterations M_{D}^{N} in the strong operator topology of $\mathcal{L}\left(H^{m}((D, \sigma), E)\right)$ is equal to zero. This case corresponds to the Hodge decomposition for the Dirichlet problem in X with a crack along σ and $H=0$.

In the next section we will prove similar results for the integrals T_{D} and M_{D} in our more general setting.

6 Construction of the scalar product $h_{D}(\cdot, \cdot)$

We first apply Lemma 4.3 to $X \backslash D$, a C^{∞} manifold with boundary. Namely, write $\mathcal{S}_{\Delta}^{m}(\hat{X} \backslash D)$ for the subspace of $H^{m}(X \backslash D, E)$ consisting of all u, such that $\Delta u=0$ in the interior of $X \backslash D$ and $t(u)=0$ on ∂X. By Lemma 4.3, we get a topological isomorphism

$$
\mathcal{S}_{\Delta}^{m}(\hat{X} \backslash D) \cap \mathcal{H}^{\perp}(X \backslash D) \xrightarrow{t_{+}} \oplus_{j=0}^{m-1} H^{m-m_{j}-1 / 2}\left(\partial D, F_{j}\right)
$$

given by $\left.u \mapsto t(u)\right|_{\partial D}$. Finally, composing the inverse t_{+}^{-1} with the trace operator

$$
H^{m}(D, E) \xrightarrow{t_{-}} \oplus_{j=0}^{m-1} H^{m-m_{j}-1 / 2}\left(\partial D, F_{j}\right)
$$

we arrive at a continuous linear mapping

$$
\begin{equation*}
H^{m}(D, E) \ni u \mapsto \mathcal{E}(u) \in \mathcal{S}_{\Delta}^{m}(\hat{X} \backslash D) \cap \mathcal{H}^{\perp}(X \backslash D) \tag{6.1}
\end{equation*}
$$

For $u \in H^{m}(D, E)$, we now set

$$
e(u)(x)= \begin{cases}u(x) & \text { if } \quad x \in D, \\ \mathcal{E}(u)(x) & \text { if } \quad x \in X \backslash \bar{D} .\end{cases}
$$

Since $t(\mathcal{E}(u))=t(u)$ on ∂D, it follows that $e(u) \in H^{m}(X, E)$. Furthermore, we have

$$
e(u) \in \stackrel{\circ}{H}^{m}(V, E)
$$

for all $u \in H^{m}((D, \sigma), E)$.
Theorem 6.1 The Hermitian form $h_{D}(u, v)=h(e(u), e(v))$ is a scalar product in $H^{m}((D, \sigma), E)$ defining a topology equivalent to the original one.

Proof. Theorem 3.5 implies the existence of a positive constant c with the property that

$$
\begin{aligned}
\|u\|_{H^{m}(D, E)}^{2} & \leq\|e(u)\|_{H^{m}(V, E)}^{2} \\
& \leq \operatorname{ch}(e(u), e(u))
\end{aligned}
$$

for all $u \in H^{m}((D, \sigma), E)$.
On the other hand,

$$
\begin{aligned}
h_{D}(u, u) & \leq C\|e(u)\|_{H^{m}(V, E)}^{2} \\
& \leq 2 C\left(\|u\|_{H^{m}(D, E)}^{2}+\|\mathcal{E}(u)\|_{H^{m}(X \backslash D, E)}^{2}\right)
\end{aligned}
$$

for all $u \in H^{m}((D, \sigma), E)$, with C a constant independent of u. Using Lemma 4.3 and the continuity of the trace operator we see that

$$
\begin{aligned}
\|\mathcal{E}(u)\|_{H^{m}(X \backslash D, E)} & \leq c \sum_{j=0}^{m-1}\left\|B_{j} u\right\|_{H^{m-m_{j}-1 / 2}\left(\partial D, F_{j}\right)} \\
& \leq C\|u\|_{H^{m}(D, E)}
\end{aligned}
$$

for all $u \in H^{m}(D, E)$, the constants c and C need not be the same in different applications. This finishes the proof.

Theorem 6.2 Assume that $u \in H^{m}(D, E)$ and $f \in L^{2}(D, F)$. For every $v \in H^{m}((D, \sigma), E)$, it follows that

$$
\begin{aligned}
h_{D}\left(T_{D} f, v\right) & =\int_{D}(f, A v)_{x} d x \\
h_{D}\left(\left(H_{D}+M_{D}\right) u, v\right) & =\int_{X \backslash D}(A \mathcal{E}(u), A \mathcal{E}(v))_{x} d x+\int_{X}(H e(u), H e(v))_{x} d x .
\end{aligned}
$$

Proof. Suppose $f \in C_{\text {comp }}^{\infty}(D, F)$. Then $T_{D} f \in \stackrel{\circ}{H}^{m}(V, E)$. Let us show that

$$
e\left(\left.T f\right|_{D}\right)=T f
$$

For this purpose, it is sufficient to check that the restriction of $T f$ to $X \backslash \bar{D}$ lies in $\mathcal{S}_{\Delta}^{m}(\hat{X} \backslash D) \cap \mathcal{H}^{\perp}(X \backslash D)$.

However, $T f=G\left(A^{*} f\right)$ and therefore, as we have already seen in the proof of Theorem 3.5,

$$
\begin{aligned}
\Delta T f & =A^{*} f-H A^{*} f \\
& =A^{*} f
\end{aligned}
$$

on X. Since f has a compact support in D we readily deduce that $\Delta T f=0$ in $X \backslash \bar{D}$.

Note that $\mathcal{H}(X \backslash D) \subset \mathcal{H}(V)$. Indeed, every element $u \in \mathcal{H}(X \backslash D)$ can be extended by zero from $X \backslash D$ to all of X as a solution to $A u=0$ on X. Since $G\left(A^{*} f\right)$ is "orthogonal" to $\mathcal{H}(V)$ we conclude that $\left.T f\right|_{X \backslash \bar{D}} \in \mathcal{H}^{\perp}(X \backslash D)$, as desired.

Further, if $v \in H^{m}((D, \sigma), E)$ then $e(v) \in \stackrel{\circ}{H}^{m}(V, E)$ and Theorem 3.5 implies

$$
\begin{aligned}
h_{D}\left(T_{D} f, v\right) & =h(T f, e(v)) \\
& =\int_{X}(f, A e(v))_{x} d x \\
& =\int_{D}(f, A v)_{x} d x .
\end{aligned}
$$

Since $C_{\text {comp }}^{\infty}(D, F)$ is dense in $L^{2}(D, F)$ and the operator T_{D} is bounded, this formula actually holds for all $f \in L^{2}(D, F)$.

Finally, (4.4) implies that

$$
\begin{aligned}
h_{D}\left(\left(H_{D}+M_{D}\right) u, v\right) & =h_{D}\left(u-T_{D} A u, v\right) \\
& =\int_{X \backslash D}(A \mathcal{E}(u), A \mathcal{E}(v))_{x} d x+\int_{X}(H e(u), H e(v))_{x} d x
\end{aligned}
$$

for all $v \in H^{m}((D, \sigma), E)$, as desired.

7 Iterations of potentials

Corollary 7.1 The operators

$$
\begin{aligned}
T_{D} A & : H^{m}((D, \sigma), E) \\
H_{D}+M_{D} & : H^{m}((D, \sigma), E)
\end{aligned} \rightarrow H^{m}((D, \sigma), E),
$$

are selfadjoint and non-negative with respect to $h_{D}(\cdot, \cdot)$, and the norms of $T_{D} A$ and $H_{D}+M_{D}$ do not exceed 1 .

Proof. This follows immediately from Theorems 6.1 and 6.2.
Similarly to $\mathcal{H}^{\perp}(V)$, we denote $\mathcal{H}^{\perp}(D)$ the space of all $F \in H^{-m}(D, E)$ such that

$$
\int_{D}(F, v)_{x} d x=0
$$

for any $v \in \mathcal{H}(D)$. It is easy to see that $H^{m}((D, \sigma), E) \cap \mathcal{H}^{\perp}(D)$ just amounts to the orthogonal complement of $\mathcal{H}(D)$ in $H^{m}((D, \sigma), E)$ with respect to the scalar product $h_{D}(\cdot, \cdot)$ thereon. Indeed, we have $\mathcal{H}(D) \hookrightarrow \mathcal{H}(V)$ because every element $v \in \mathcal{H}(D)$ may be extended by zero from D to X as a solution to $A v=0$ on X. It follows that $\mathcal{E}(v)=0$ for all $v \in \mathcal{H}(D)$, whence $A e(v)=0$ on X and

$$
\begin{aligned}
h_{D}(u, v) & =\int_{X}(H e(u), H e(v))_{x} d x \\
& =\int_{D}(u, v)_{x} d x
\end{aligned}
$$

as desired.
Lemma 4.4 allows one to consider iterations of $T_{D} A$ and $H_{D}+M_{D}$ in the space $H^{m}((D, \sigma), E)$. Given a closed subspace Σ of $H^{m}((D, \sigma), E)$, we write π_{Σ} for the orthogonal projection of $H^{m}((D, \sigma), E)$ onto Σ with respect to the scalar product $h_{D}(\cdot, \cdot)$.

Corollary 7.2 In the strong operator topology in $\mathcal{L}\left(H^{m}((D, \sigma), E)\right)$, we have

$$
\begin{aligned}
\lim _{N \rightarrow \infty}\left(T_{D} A\right)^{N} & =\pi_{\operatorname{ker}\left(H_{D}+M_{D}\right)} \\
\lim _{N \rightarrow \infty}\left(H_{D}+M_{D}\right)^{N} & =\pi_{H^{m}((D, \sigma), E) \cap \mathcal{S}_{A}(D)} .
\end{aligned}
$$

Moreover, in the strong operator topology of $\mathcal{L}\left(L^{2}(D, F)\right)$,

$$
\lim _{N \rightarrow \infty}\left(\operatorname{Id}-A T_{D}\right)^{N}=\pi_{\operatorname{ker} T_{D}}
$$

Proof. It follows from Corollary 7.1 that

$$
\begin{aligned}
\lim _{N \rightarrow \infty}\left(T_{D} A\right)^{N} & =\pi_{\operatorname{ker}\left(\mathrm{Id}-T_{D} A\right)} \\
\lim _{N \rightarrow \infty}\left(H_{D}+M_{D}\right)^{N} & =\pi_{\operatorname{ker}\left(\mathrm{Id}-H_{D}-M_{D}\right)} \\
\lim _{N \rightarrow \infty}\left(\operatorname{Id}-A T_{D}\right)^{N} & =\pi_{\operatorname{ker} A T_{D}}
\end{aligned}
$$

in the strong operator topology of $\mathcal{L}\left(H^{m}((D, \sigma), E)\right)$ or $\mathcal{L}\left(L^{2}(D, F)\right)$, respectively (see, for instance, $\S 2$ of [3] or [4] for compact operators). Theorem 6.2 and (4.4) imply

$$
\begin{aligned}
\operatorname{ker}\left(\operatorname{Id}-T_{D} A\right) & =\operatorname{ker}\left(H_{D}+M_{D}\right) \\
\operatorname{ker} T_{D} A & =H^{m}((D, \sigma), E) \cap \mathcal{S}_{A}(D), \\
\operatorname{ker} A T_{D} & =\operatorname{ker} T_{D},
\end{aligned}
$$

showing the corollary.
Obliviously, if the coefficients of A are real analytic and σ has at least one interior point on ∂D then $H^{m}((D, \sigma), E) \cap \mathcal{S}_{A}(D)=\{0\}$. If moreover every connected component of $X \backslash \bar{D}$ meets the boundary of V, i.e., $\partial X \cup \sigma$, then $H_{D}=0$ and

$$
\operatorname{ker} M_{D}=\stackrel{\circ}{H}^{m}(D, E)
$$

Indeed, according to Theorem 6.2, if $u \in H^{m}((D, \sigma), E)$ and $M_{D} u=0$ then $A \mathcal{E}(u)=0$ in $X \backslash \bar{D}$ and $t(\mathcal{E}(u))=0$ on $\partial X \cup \sigma$. Hence it follows that $\mathcal{E}(u) \equiv 0$ in $X \backslash \bar{D}$, and so $t(\mathcal{E}(u))=0$ on ∂D. From this we conclude that $t(u)=0$ on ∂D whence $u \in \stackrel{\circ}{H}^{m}(D, E)$. Conversely, if $u \in \stackrel{\circ}{H}^{m}(D, E)$ then $M_{D} u=0$, as desired.

Theorem 7.3 In the strong operator topology of $\mathcal{L}\left(H^{m}((D, \sigma), E)\right)$, we have

$$
\begin{align*}
& \mathrm{Id}=H_{D}+\pi_{\operatorname{ker}\left(H_{D}+M_{D}\right)}+\sum_{\nu=0}^{\infty}\left(T_{D} A\right)^{\nu} M_{D} \tag{7.1}\\
& \mathrm{Id}=\pi_{H^{m}((D, \sigma), E) \cap \mathcal{S}_{A}(D)}+\sum_{\nu=0}^{\infty}\left(H_{D}+M_{D}\right)^{\nu} T_{D} A \tag{7.2}
\end{align*}
$$

Moreover, in the strong operator topology of $\mathcal{L}\left(L^{2}(D, F)\right)$,

$$
\begin{equation*}
\mathrm{Id}=\pi_{\mathrm{ker} T_{D}}+\sum_{\nu=0}^{\infty} A\left(H_{D}+M_{D}\right)^{\nu} T_{D} \tag{7.3}
\end{equation*}
$$

Proof. Write

$$
\begin{equation*}
\operatorname{Id}=\left(\operatorname{Id}-A T_{D}\right)^{N}+\sum_{\nu=0}^{N-1}\left(\operatorname{Id}-A T_{D}\right)^{\nu} A T_{D} \tag{7.4}
\end{equation*}
$$

for every $N=1,2, \ldots$. It is easily seen from (4.4) that

$$
\begin{aligned}
\left(\mathrm{Id}-A T_{D}\right)^{\nu} A T_{D} & =A\left(\operatorname{Id}-T_{D} A\right)^{\nu} T_{D} \\
& =A\left(H_{D}+M_{D}\right)^{\nu} T_{D}
\end{aligned}
$$

Using Corollary 7.2 we can pass to the limit in (7.4), when $N \rightarrow \infty$, thus obtaining (7.3). The proofs for (7.1) and (7.2) are similar.

8 Cauchy problem

We first introduce the space of Cauchy data on σ, for our differential operator A. Since A is given the domain $H^{m}(D, E)$, the space of zero Cauchy data is $H^{m}((D, \sigma), E)$. Recall that $H^{m}((D, \sigma), E)$ is proved to be the restriction of $\stackrel{\circ}{H}^{m}(V, E)$ to D.

Similarly to (4.2) we define the space of Cauchy data on σ as the quotient space

$$
\frac{H^{m}(D, E)}{H^{m}((D, \sigma), E)},
$$

t being thought of as the quotient mapping

$$
\begin{equation*}
t: \quad H^{m}(D, E) \rightarrow \frac{H^{m}(D, E)}{H^{m}((D, \sigma), E)} \tag{8.1}
\end{equation*}
$$

Once again we use the Hilbert structure in $H^{m}(D, E)$ to construct a continuous right inverse t^{-1} for t.

If the boundary of σ on ∂D is sufficiently smooth then the quotient space in (8.1) can be identified with $\oplus_{j=0}^{m-1} H^{m-m_{j}-1 / 2}\left(\sigma, F_{j}\right)$.

Consider the following Cauchy problem, for the operator A and the Dirichlet system $\left(B_{j}\right)_{j=0, \ldots, m-1}$.

Problem 8.1 Given $f \in L^{2}(D, F)$ and $u_{0} \in H^{m}(D, E) / H^{m}((D, \sigma), E)$, find $u \in H^{m}(D, E)$ satisfying

$$
\left\{\begin{array}{rlll}
P u & =f & \text { in } & D, \\
t(u) & =u_{0} & \text { on } & \sigma .
\end{array}\right.
$$

This problem is ill-posed if σ is different from the whole boundary. Using Theorem 7.3 we obtain approximate solutions to the problem. To this end, we observe that

$$
\frac{H^{m}(V, E)}{\stackrel{\circ}{H^{m}}(V, E)} \hookrightarrow \frac{H^{m}(D, E)}{H^{m}((D, \sigma), E)}
$$

is a well-defined mapping "onto", which substitutes restriction of sections over ∂V to σ. Pick a $U \in H^{m}(V, E)$ such that $t(U)=u_{0}$ on σ. Lemma 4.3 yields that $M U \in H^{m}(V, E)$ satisfies $\Delta M U=0$ in V and $t(M U)=u_{0}$ on σ, the last property being sufficient. Problem 8.1 thus reduces to that with zero boundary conditions.

Problem 8.2 Given any $f \in L^{2}(D, F)$, find a section $u \in H^{m}((D, \sigma), E)$ such that $A u=f$ in D.

Note that for the problem to be solvable it is necessary that $f \perp \operatorname{ker} T_{D}$. Indeed,

$$
\begin{aligned}
\int_{D}(f, g)_{x} d x & =\int_{D}(A u, g)_{x} d x \\
& =h_{D}\left(u, T_{D} g\right) \\
& =0
\end{aligned}
$$

for all $g \in L^{2}(D, F)$ satisfying $T_{D} g=0$, the second equality being due to Theorem 6.2.

Theorem 8.3 Suppose $f \in L^{2}(D, F)$. Problem 8.2 is solvable if and only if $f \perp \operatorname{ker} T_{D}$ and the series

$$
R f=\sum_{\nu=0}^{\infty}\left(H_{D}+M_{D}\right)^{\nu} T_{D} f
$$

converges in $H^{m}((D, \sigma), E)$. Moreover, if these conditions hold then $R f$ is a solution to Problem 8.2.

Proof. As mentioned above, the necessity follows from Theorems 6.1 and 7.3.

Conversely, let both conditions of the theorem be fulfilled. Then (7.3) implies

$$
f=\sum_{\nu=0}^{\infty} A\left(H_{D}+M_{D}\right)^{\nu} T_{D} f .
$$

Since the series $R f$ converges in $H^{m}((D, \sigma), E)$ we conclude that $f=A R f$, as desired.

In the case considered in Example 5.2 a similar result has been proved in [8].

Corollary 7.2 shows that the solution $u=R f$ lies in the orthogonal complement of the subspace $H^{m}((D, \sigma), E) \cap \mathcal{S}_{A}(D)$ in $H^{m}((D, \sigma), E)$ with respect to the scalar product $h_{D}(\cdot, \cdot)$. Clearly, Problem 8.2 possesses at most one solution belonging to this orthogonal complement. The partial sums $R_{N} f$ of the series $R f$ may be regarded as approximate solutions to Problem 8.2, provided that $f \perp \operatorname{ker} T_{D}$. In fact, it follows easily from Corollary 7.2 and Theorem 7.3 that $R_{N} f$ belongs to the orthogonal complement in question, for each $N=0,1, \ldots$, and

$$
\lim _{N \rightarrow \infty}\left\|f-\left(\pi_{\operatorname{ker} T_{D}} f+A R_{N} f\right)\right\|_{L^{2}(D, F)}=0
$$

for all $f \in L^{2}(D, F)$. Indeed,

$$
\left\|f-\left(\pi_{\operatorname{ker} T_{D}} f+A R_{N} f\right)\right\|_{L^{2}(D, F)}=\left\|\sum_{\nu=N+1}^{\infty} A M_{D}^{\nu} T_{D} f\right\|_{L^{2}(D, F)},
$$

and the last expression is the rest of a converging series.
If A is included into an elliptic complex

$$
C_{\mathrm{loc}}^{\infty}(X, E) \xrightarrow{A} C_{\mathrm{loc}}^{\infty}(X, F) \xrightarrow{B} C_{\mathrm{loc}}^{\infty}(X, G)
$$

then the condition $f \perp \operatorname{ker} T_{D}$ in Theorem 8.3 may be replaced by

1) $B f=0$ in D;
2) $f \perp \operatorname{ker} T_{D} \cap \mathcal{S}_{B}(D)$.

Write

$$
n(g)=\oplus_{j=0}^{m-1} *_{F_{j}}^{-1} C_{j} *_{F}(g)
$$

for the formal adjoint of t with respect to the Green formula for A in D, cf. [9, 9.2.3]. Set

$$
\mathcal{H}^{1}(D, \sigma)=\left\{g \in L^{2}(D, F): A^{*} g=0, B g=0, \text { and } n(g)=0 \text { on } \partial D \backslash \sigma\right\} .
$$

We call $\mathcal{H}^{1}(D, \sigma)$ the harmonic space in the Cauchy problem with data on σ. By the ellipticity assumption, the elements of $\mathcal{H}^{1}(D, \sigma)$ are of class C^{∞} in D.

Lemma $8.4 \operatorname{ker} T_{D} \cap \mathcal{S}_{B}(D)=\mathcal{H}^{1}(D, \sigma)$.
Proof. Let $g \in \operatorname{ker} T_{D} \cap \mathcal{S}_{B}(D)$. From Theorem 6.2 it follows that $A^{*} g=0$ in the sense of distributions on D. By the ellipticity of $B \oplus A^{*}$ we conclude that $g \in C_{\mathrm{loc}}^{\infty}(D, F)$.

We next claim that $n(g)=0$ weakly on $\partial D \backslash \sigma$. To prove this, we denote by D_{ε} the set of all $x \in D$ such that $\operatorname{dist}(x, \partial D)>\varepsilon$. For $\varepsilon>0$ small enough, D_{ε} is also a domain with C^{∞} boundary. We shall have established the equality $n(g)=0$ on $\partial D \backslash \sigma$ if we show that

$$
\lim _{\varepsilon \rightarrow 0} \int_{\partial D_{\varepsilon}}(t(u), n(g))_{x} d s_{\varepsilon}=0
$$

for all $u \in C^{\infty}(\bar{D}, E)$ vanishing near σ. Here, $d s_{\varepsilon}$ is the area element of the surface ∂D_{ε}.

Since g is C^{∞} in D, we get

$$
\begin{aligned}
\lim _{\varepsilon \rightarrow 0} \int_{\partial D_{\varepsilon}}(t(u), n(g))_{x} d s_{\varepsilon} & =\lim _{\varepsilon \rightarrow 0} \int_{D_{\varepsilon}}(A u, g)_{x} d x \\
& =\int_{D}(A u, g)_{x} d x \\
& =h_{D}\left(u, T_{D} g\right) \\
& =0,
\end{aligned}
$$

the first equality being due to Stokes' formula and the equality $A^{*} g=0$, the second equality being a consequence of the fact that $g \in L^{2}(D, F)$, and the third one being due to Theorem 6.2. We have thus proved that $\operatorname{ker} T_{D} \cap \mathcal{S}_{B}(D)$ is a subset of $\mathcal{H}^{1}(D, \sigma)$.

Let us prove the opposite inclusion. Pick a $g \in \mathcal{H}^{1}(D, \sigma)$. By ellipticity we conclude that $g \in C_{\text {loc }}^{\infty}(D, F)$. For every $u \in C_{\text {loc }}^{\infty}(\bar{D}, E)$ vanishing near σ, we have

$$
\begin{aligned}
h_{D}\left(u, T_{D} g\right) & =\lim _{\varepsilon \rightarrow 0} \int_{D_{\varepsilon}}(A u, g)_{x} d x \\
& =\lim _{\varepsilon \rightarrow 0} \int_{\partial D_{\varepsilon}}(t(u), n(g))_{x} d s_{\varepsilon} \\
& =0 .
\end{aligned}
$$

Since such sections u are dense in $H^{m}((D, \sigma), E)$, it follows that $T_{D} g=0$, as desired.

It is worth pointing out that the space $\mathcal{H}^{1}(D, \sigma)$ fails to be finite-dimensional in general.

9 Applications to Zaremba problem

In this section we assume that σ is the closure of an open subset in ∂D with smooth boundary.

Let $H^{-m}((D, \partial D \backslash \sigma), E)$ be the dual space for $H^{m}((D, \sigma), E)$ with respect to the pairing in $L^{2}(D, E)$. It coincides with the completion of $C_{\text {comp }}^{\infty}(D \cup \sigma, E)$ with respect to the norm

$$
\|F\|_{H^{-m}((D, \partial D \backslash \sigma), E)}=\sup _{v \in C_{\text {comp }}^{\infty}(\bar{D} \backslash \sigma, E)} \frac{\left|\int_{D}(F, v)_{x} d x\right|}{\|v\|_{H^{m}((D, \sigma), E)}}
$$

Recall that for $s \geq 0$ we write $H^{-s}\left(\partial D \backslash \sigma, F_{j}\right)$ for the dual of $\stackrel{\circ}{H}^{s}\left(\partial D \backslash \sigma, F_{j}\right)$ with respect to the pairing in $L^{2}\left(\partial D \backslash \sigma, F_{j}\right)$, cf. Section 3. One can prove that

$$
H^{-s}\left(\partial D \backslash \sigma, F_{j}\right) \stackrel{\text { top. }}{\cong} \frac{H^{-s}\left(\partial D, F_{j}\right)}{H_{\sigma}^{-s}\left(\partial D, F_{j}\right)}
$$

where $H_{\sigma}^{-s}\left(\partial D, F_{j}\right)$ is the subspace of $H^{-s}\left(\partial D, F_{j}\right)$ consisting of the elements with a support in σ.

By the above, the sesquilinear form

$$
\int_{\partial D}\left(u_{1}, t(v)\right)_{x} d s
$$

is well defined for all

$$
\begin{aligned}
u_{1} & \in \oplus_{j=0}^{m-1} H^{-m+m_{j}+1 / 2}\left(\partial D \backslash \sigma, F_{j}\right), \\
v & \in H^{m}((D, \sigma), E) .
\end{aligned}
$$

We are now in a position to consider the following generalised Zaremba problem in D.

Problem 9.1 Given

$$
\begin{aligned}
F & \in H^{-m}((D, \partial D \backslash \sigma), E), \\
u_{1} & \in \oplus_{j=0}^{m-1} H^{-m+m_{j}+1 / 2}\left(\partial D \backslash \sigma, F_{j}\right),
\end{aligned}
$$

find $u \in H^{m}(D, E)$ such that

The equation $\Delta u=F$ has to be understood in the sense of distributions in D, while the boundary conditions are interpreted in the following weak sense: Find $u \in H^{m}((D, \sigma), E)$ satisfying

$$
\begin{equation*}
\int_{D}(A u, A v)_{x} d x=\int_{D}(F, v)_{x} d x+\int_{\partial D}\left(u_{1}, t(v)\right)_{x} d s \tag{9.1}
\end{equation*}
$$

for all $v \in H^{m}((D, \sigma), E)$.
We emphasise that the trace of $n(A u)$ on $\partial D \backslash \sigma$ is not defined for any $u \in H^{m}((D, \sigma), E)$, because the order of $n \circ A$ is equal to $2 m-1$. To cope with this, a familiar way is to assign an operator L with a dense domain Dom $L \hookrightarrow H^{m}((D, \sigma), E)$ to Problem 9.1, such that $n(A u)$ is well defined for all $u \in \operatorname{Dom} L$. In fact, $\operatorname{Dom} L$ is defined to be the completion of $C_{\text {comp }}^{\infty}(\bar{D} \backslash \sigma, E)$ with respect to the graph norm of $\quad u \mapsto(u, n(A u))$ in $H^{m}((D, \sigma), E) \oplus \mathfrak{N}$, where

$$
\mathfrak{N}=\oplus_{j=0}^{m-1} H^{-m+m_{j}+1 / 2}\left(\partial D \backslash \sigma, F_{j}\right)
$$

For more details, see Roitberg [5] and elsewhere. Then, (9.1) defines a continuous operator $\operatorname{Dom} L \rightarrow H^{-m}((D, \partial D \backslash \sigma), E) \oplus \mathfrak{N}$ by $L u=(\Delta u, n(A u))$.

If A is the gradient operator in \mathbb{R}^{n}, then (9.1) is just the classical Zaremba problem in D.

Lemma 9.2 Suppose $F=0$ and $u_{1}=0$. Then $u \in H^{m}(D, E)$ is a solution to Problem 9.1 if and only if $u \in H^{m}((D, \sigma), E) \cap \mathcal{S}_{A}(D)$.

Proof. Obviously, any $u \in H^{m}((D, \sigma), E) \cap \mathcal{S}_{A}(D)$ is a solution of Problem 9.1 with $F=0$ and $u_{1}=0$.

Conversely, let u be a solution to Problem 9.1 with $F=0$ and $u_{1}=0$. Substituting $v=u$ to (9.1) implies $A u=0$ whence $u \in H^{m}((D, \sigma), E) \cap \mathcal{S}_{A}(D)$, as desired.

Lemma 9.2 shows that Problem 9.1 is not Fredholm in general, for the space $H^{m}((D, \sigma), E) \cap \mathcal{S}_{A}(D)$ need not be finite-dimensional.

For any $v \in \stackrel{\circ}{H}^{m}(V, E)$, the restriction $\left.v\right|_{D}$ belongs to $H^{m}((D, \sigma), E)$. Hence to each $F \in H^{-m}((D, \partial D \backslash \sigma), E)$ we can assign an element $\tilde{F} \in H^{-m}(V, E)$ by

$$
(\tilde{F}, v)=\left(F,\left.v\right|_{D}\right)
$$

for all $v \in \stackrel{\circ}{H}^{m}(V, E)$. We will write \tilde{F} simply $\chi_{D} F$ when no confusion can arise. Therefore, the integral

$$
G\left(\chi_{D} F\right)=\int_{D}\left(F, *_{E}^{-1} K_{G}(x, \cdot)\right)_{y} d y
$$

defines an element of $H^{m}((D, \sigma), E)$, for any $F \in H^{-m}((D, \partial D \backslash \sigma), E)$.
Furthermore, since $u \mapsto t(u) \oplus n(A u)$ is a Dirichlet system of order $2 m-1$ on ∂D, for every data $u_{1} \in \mathfrak{N}$ there exists a $U \in \operatorname{Dom} L$ with the property that $n(A U)=u_{1}$ on $\partial D \backslash \sigma$ (see for instance Lemma 9.2.17 of [9]). This means that

$$
\int_{D}(A U, A v)_{x} d x=\int_{D}(\Delta U, v)_{x} d x+\int_{\partial D}\left(u_{1}, t(v)\right)_{x} d s
$$

for all $v \in H^{m}((D, \sigma), E)$. Set

$$
\begin{aligned}
P_{\mathrm{sl} 1} u_{1}(x) & =-\int_{\partial D} G_{A^{*}}\left(K_{G}(x, \cdot), A U\right) \\
& =\int_{\partial D}\left(n(A U), t\left(*_{E}^{-1} K_{G}(x, \cdot)\right)\right)_{y} d s
\end{aligned}
$$

for $x \in D$.
This integral is well defined and it does not depend on the particular choice of U. Indeed, since $\Delta U \in H^{-m}((D, \partial D \backslash \sigma), E)$ we conclude, by Stokes' formula, that

$$
\begin{aligned}
P_{\mathrm{sl}} u_{1} & =G A^{*}\left(\chi_{D} A U\right)-G\left(\chi_{D} \Delta U\right) \\
& =T_{D} A U-G\left(\chi_{D} \Delta U\right),
\end{aligned}
$$

which is in $H^{m}((D, \sigma), E)$.

Let now $U \in \operatorname{Dom} L$ be such that $n(A U)=0$ on $\partial D \backslash \sigma$. Then using Theorem 3.3 yields

$$
\begin{aligned}
\int_{X}\left(-\int_{\partial D} G_{A^{*}}\left(K_{G}(x, \cdot), A U\right), v\right)_{x} d x & =\int_{X}\left(G A^{*} \chi_{D} A U-G \chi_{D} \Delta U, v\right)_{x} d x \\
& =\int_{X}\left(A^{*} \chi_{D} A U-\chi_{D} \Delta U, G v\right)_{x} d x \\
& =\int_{D}(A U, A G v)_{x} d x-\int_{D}(\Delta U, G v)_{x} d x \\
& =0
\end{aligned}
$$

for all $v \in C_{\text {comp }}^{\infty}(X, E)$, because $G v \in H^{m}((D, \sigma), E)$. Hence, $P_{\mathrm{sl}} u_{1}$ is independent of the choice of U.

Theorem 9.3 Problem 9.1 is solvable if and only if 1)

$$
\int_{D}(F, v)_{x} d x+\int_{\partial D}\left(u_{1}, t(v)\right)_{x} d s=0
$$

for all $v \in H^{m}((D, \sigma), E) \cap \mathcal{S}_{A}(D)$;
2) the series

$$
R\left(F, u_{1}\right)=\sum_{\nu=0}^{\infty}\left(H_{D}+M_{D}\right)^{\nu}\left(G\left(\chi_{D} F\right)+P_{\mathrm{sl}} u_{1}\right)
$$

converges in the $H^{m}(D, E)$-norm.
If 1) and 2) hold then $R\left(F, u_{1}\right)$ is a solution to Problem 9.1.
Proof. Let Problem 9.1 be solvable and let $u \in H^{m}((D, \sigma), E)$ be a solution. Then

$$
\begin{aligned}
T_{D} A u & =G\left(\chi_{D} \Delta u\right)-\int_{\partial D} G_{A^{*}}\left(K_{G}(x, \cdot), A u\right) \\
& =G\left(\chi_{D} F\right)+P_{\mathrm{sl}} u_{1},
\end{aligned}
$$

and so the series $R\left(F, u_{1}\right)=R A u$ converges in the $H^{m}(D, E)$-norm, which is due to Corollary 7.2.

Conversely, assume that 1) and 2) are fulfilled. Let us prove that the series $R\left(F, u_{1}\right)$ satisfies (9.1). Indeed, by Theorem 6.1

$$
\begin{aligned}
\int_{D}\left(A R\left(F, u_{1}\right), A v\right)_{x} d x & =h_{D}\left(G\left(\chi_{D} F\right)+P_{\mathrm{sl}} u_{1}, v\right) \\
& =h_{D}\left(G\left(\chi_{D} F\right)+G A^{*}\left(\chi_{D} A U\right)-G\left(\chi_{D} \Delta U\right), v\right)
\end{aligned}
$$

with a section $U \in \operatorname{Dom} L$ such that $n(A U)=u_{1}$ on $\partial D \backslash \sigma$.
Using Theorem 3.3 we see that $e(G \tilde{F})=G \tilde{F}$ for all $\tilde{F} \in H^{-m}(V, E)$ satisfying $\tilde{F}-H \tilde{F}=0$ in $X \backslash \bar{D}$. We next apply this equality with

$$
\tilde{F}=\chi_{D} F+A^{*}\left(\chi_{D} A U\right)-\chi_{D} \Delta U .
$$

We have

$$
\begin{aligned}
\int_{X}(\tilde{F}, v)_{x} d x & =\int_{D}(F-\Delta U, v)_{x} d x \\
& =\int_{D}(F, v)_{x} d x+\int_{\partial D}(n(A U), t(v))_{x} d s \\
& =0
\end{aligned}
$$

for all $v \in H^{m}((D, \sigma), E) \cap \mathcal{S}_{A}(D)$, the last equality being a consequence of condition 1). Hence it follows readily that $H \tilde{F}=0$ in V, and so $\tilde{F}-H \tilde{F}=0$ in $X \backslash \bar{D}$.

Therefore, $e(G \tilde{F})=G \tilde{F}$ and we get

$$
\begin{aligned}
\int_{D}\left(A R\left(F, u_{1}\right), A v\right)_{x} d x & =h(e(G \tilde{F}), e(v)) \\
& =\int_{X}(A G \tilde{F}, A e(v))_{x} d x+\int_{X}(H G \tilde{F}, H e(v))_{x} d x \\
& =\int_{X}(\tilde{F}, G \Delta e(v))_{x} d x \\
& =\int_{X}(\tilde{F}, e(v)-H e(v))_{x} d x \\
& =\int_{D}(F-\Delta U, e(v))_{x} d x+\int_{D}(A U, A e(v))_{x} d x \\
& =\int_{D}(F, v)_{x} d x+\int_{\partial D}(n(A U), t(v))_{x} d s
\end{aligned}
$$

for all $v \in H^{m}((D, \sigma), E)$. Here, the fifth equality is due to condition 1) and the fact that $H e(v) \in H^{m}((D, \sigma), E) \cap \mathcal{S}_{A}(D)$, and the last equality is a consequence of Stokes' formula. We have arrived at (9.1), thus proving the theorem.

Corollary 7.2 implies that the solution $R\left(F, u_{1}\right)$ to Problem 9.1 lies in the orthogonal complement of $H^{m}((D, \sigma), E) \cap \mathcal{S}_{A}(D)$ in $H^{m}((D, \sigma), E)$ with respect to the scalar product $h_{D}(\cdot, \cdot)$. Moreover, $R\left(F, u_{1}\right)$ is the unique solution belonging to this subspace. The partial sums $R_{N}\left(F, u_{1}\right)$ of the series $R\left(F, u_{1}\right)$ may be regarded as approximate solutions to Problem 9.1, provided that F
and u_{1} meet condition 1) of Theorem 9.3. The sequence $R_{N}\left(F, u_{1}\right)$ has the following property:

$$
\begin{align*}
& \left|\int_{D}\left(A R_{N}\left(F, u_{1}\right), A v\right)_{x} d x-\int_{D}(F, v)_{y} d y-\int_{\partial D}\left(u_{1}, t(v)\right)_{x} d s\right| \\
& \quad \leq c\left\|M_{D}^{N+1}\left(G\left(\chi_{D} F\right)+P_{\mathrm{sl}} u_{1}\right)\right\|_{H^{m}(D, E)}\|v\|_{H^{m}(D, E)} \tag{9.2}
\end{align*}
$$

for all $v \in H^{m}((D, \sigma), E)$, with c a constant independent of N and v. Indeed, as we have seen above (cf. (7.4)),

$$
T_{D} A R_{N}\left(F, u_{1}\right)=\left(G\left(\chi_{D} F\right)+P_{\mathrm{sl}} u_{1}\right)-M_{D}^{N+1}\left(G\left(\chi_{D} F\right)+P_{\mathrm{sl}} u_{1}\right)
$$

whence

$$
\begin{aligned}
\int_{D} & \left(A R_{N}\left(F, u_{1}\right), A v\right)_{x} d x \\
& =h_{D}\left(T_{D} A R_{N}\left(F, u_{1}\right), v\right) \\
& =h_{D}\left(\left(G\left(\chi_{D} F\right)+P_{\mathrm{sl}} u_{1}\right)-M_{D}^{N+1}\left(G\left(\chi_{D} F\right)+P_{\mathrm{sl}} u_{1}\right), v\right) \\
& =\int_{D}(F, v)_{x} d x+\int_{\partial D}\left(u_{1}, t(v)\right)_{x} d s-h_{D}\left(M_{D}^{N+1}\left(G\left(\chi_{D} F\right)+P_{\mathrm{sl}} u_{1}\right), v\right) .
\end{aligned}
$$

The scalar product $h_{D}(\cdot, \cdot)$ defines an equivalent norm, hence the estimate (9.2) holds. Since $G\left(\chi_{D} F\right)+P_{\mathrm{sl}} u_{1}$ is orthogonal to $H^{m}((D, \sigma), E) \cap \mathcal{S}_{A}(D)$ we see that

$$
\lim _{N \rightarrow \infty}\left\|M_{D}^{N+1}\left(G\left(\chi_{D} F\right)+P_{\mathrm{sl}} u_{1}\right)\right\|_{H^{m}(D, E)}=0
$$

Of course, if Problem 9.1 is Fredholm then the series $R\left(F, u_{1}\right)$ converges for all data F and u_{1}.

In the setting of Example 5.2 such a theorem was proved in [8]. We can also treat the inhomogeneous Zaremba problem.

Problem 9.4 Given

$$
\begin{aligned}
F & \in H^{-m}((D, \partial D \backslash \sigma), E), \\
u_{0} & \in \oplus_{j=0}^{m-1} H^{m-m_{j}-1 / 2}\left(\sigma, F_{j}\right), \\
u_{1} & \in \oplus_{j=0}^{m-1} H^{-m+m_{j}+1 / 2}\left(\partial D \backslash \sigma, F_{j}\right),
\end{aligned}
$$

find $u \in H^{m}(D, E)$ such that

$$
\left\{\begin{array}{rll}
\Delta u & =F & \text { in } \quad D \\
t(u) & =u_{0} & \text { on } \quad \sigma, \\
n(A u) & =u_{1} \quad \text { on } \quad \partial D \backslash \sigma .
\end{array}\right.
$$

Indeed, using the potential $M_{D} t^{-1} u_{0}$ as in Section 4, we easily reduce it to Problem 9.1.

References

[1] L. I. Hedberg and T. H. Wolff, Thin sets in nonlinear potential theory, Ann. Inst. Fourier (Grenoble) 33 (1983), no. 4, 161-187.
[2] L. I. Hedberg, Approximation by harmonic functions and stability of the Dirichlet problem, Exposition Math. 11 (1993), 193-259.
[3] M. Nacinovich and A. Shlapunov, On iterations of the Green integrals and their applications to elliptic differential complexes, Math. Nachr. 180 (1996), 243-286.
[4] M. M. Lavrent'ev, V. G. Romanov, and S. P. Shishatskir, IllPosed Problems of Mathematical Physics and Analysis, Nauka, Moscow, 1980, 286 pp.
[5] Ya. A. Roitberg, Elliptic Boundary Value Problems in Generalized Functions, Kluwer Academic Publishers, Dordrecht NL, 2000.
[6] A. V. Romanov, Convergence of iterations of Bochner-Martinelli operator, and the Cauchy-Riemann system, Soviet Math. Dokl. 19 (1978), no. 5 .
[7] B.-W. Schulze, Crack problems in the edge pseudo-differential calculus, Applic. Analysis 45 (1992), 333-360.
[8] B.-W. Schulze, A. A. Shlapunov, and N. Tarkhanov, Regularisation of Mixed Boundary Problems, Preprint 99/9, Univ. Potsdam, Potsdam, 1999, 32 pp.
[9] N. Tarkhanov, The Cauchy Problem for Solutions of Elliptic Equations, Akademie-Verlag, Berlin, 1995.
[10] M. I. Vishik, On strongly elliptic systems of differential equations, Mat. Sb. 29 (71) (1951), no. 3.

[^1]
[^0]: *Supported by the Max-Planck Gesellschaft and the RFFI grant 99-01-00790.

[^1]: (B.-W. Schulze) Universität Potsdam, Institut für Mathematik, Postfach 6015 53, 14415 Potsdam, Germany

 E-mail address: schulze@math.uni-potsdam.de
 (A. Shlapunov) Krasnoyarsk State University, pr. Svobodnyi, 79, 660041 Krasnoyarsk, Russia

 E-mail address: shlapuno@math.kgu.krasnoyarsk.su
 (N. Tarkhanov) Institute of Physics, Russian Academy of Sciences, Akademgorodok, 660036 Krasnoyarsk, Russia

 E-mail address: tarkhan@math.uni-potsdam.de

